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We demonstrate a substantial improvement on one of the most
celebrated empirical laws in the study of language, Zipf’s 75-y-old
theory that word length is primarily determined by frequency of
use. In accord with rational theories of communication, we show
across 10 languages that average information content is a much
better predictor of word length than frequency. This indicates that
human lexicons are efficiently structured for communication by
taking into account interword statistical dependencies. Lexical sys-
tems result from an optimization of communicative pressures, cod-
ing meanings efficiently given the complex statistics of natural
language use.

information theory | rational analysis

One widely known and apparently universal property of hu-
man language is that frequent words tend to be short. This

law was popularized by Harvard linguist George Kingsley Zipf,
who observed that “the magnitude of words tends, on the whole,
to stand in an inverse (not necessarily proportionate) relation-
ship to the number of occurrences” (1).
Zipf theorized that this pattern resulted from a pressure for

communicative efficiency. Information can be conveyed as con-
cisely as possible by giving the most frequently used meanings the
shortest word forms, much like in variable-length (e.g., Huffman)
codes. This strategy provided one key exemplar of Zipf’s principle
of least effort, a grand “principle that governs our entire individual
and collective behavior of all sorts, including the behavior of our
language” (2). Zipf’s idea of assigningword length by frequency can
be maximally concise and efficient if words occur independently
from a stationary distribution. However, natural language use is
highly nonstationary as word probabilities change depending on
their context. A more efficient code for meanings can therefore be
constructed by respecting the statistical dependencies between
words. Here, we show that human lexical systems are such codes,
with word length primarily determined by the average amount
of information a word conveys in context. The exact forms of the
frequency–length relationship (3, 4) and the distribution of word
lengths (5) have been quantitatively evaluated previously. In con-
trast, information content offers an empirically supported and ra-
tionallymotived alternative toZipf’s frequency–length relationship.
A lexicon that assigns word lengths based on information

content differs from Zipf’s theory in two key ways. First, such a
lexicon would not be the most concise one possible as it would
not shorten highly informative words, even if shorter distinctive
wordforms were available. Second, unlike Zipf’s system, assigning
word length based on information content keeps the information
rate of communication as constant as possible (6). A tendency
for this type of “smoothing out” peaks and dips of informativeness
is known as uniform information density and has been observed in
choices made during online language production (7–10). For-
mally, uniform information density holds that language users
make choices that keep the number of bits of information com-
municated per unit of time approximately constant. For instance,
more informative syllables are produced with longer durations
than less informative syllables, meaning that speech rate is mod-
ulated to prevent communicating too many bits in a short period
(7). This idea can be generalized to the design of lexical systems

(11, 6): the amount of information conveyed by a word should
be linearly related to the amount of time it takes to produce—
approximately, its length—to convey the same amount of in-
formation in each unit of time. A constant information rate
can make optimal use of the speech channel by maximizing the
amount of information conveyed, without exceeding the channel
capacity of speech or our cognitive systems (12, 13). Thus, lexical
systems that assign length according to information content can
be communicatively more efficient than those that use frequency.
Importantly, the amount of information conveyed by an in-

stance of a word depends on its context. To formalize this, we
can consider two random variables, C for contexts and W for
words, with a joint distribution P(C, W) given by the natural
statistics of language use. The average amount of information
conveyed by a particular word w is given by the following (14):

−
X

c

PðC ¼ c jW ¼ wÞ logP ðW ¼ w jC ¼ cÞ: [1]

Intuitively, this measure corresponds to the expected information
conveyed by a randomly chosen instance of w from a large corpus.
To see this, note that an instance of w will occur in context C = c
with probability P(C= c |W=w), and will there convey an amount
of information given by −log P(W = w |C = c). When estimated
from a corpus, this measure is simply the mean negative log
probability of tokens of w:

−
1
N

XN

i¼1

log PðW ¼ w j C ¼ ciÞ;

where ci is the context for the ith occurrence of w and N is the
total frequency of w in the corpus.
In general, there are many variables that may count as part of

the “context” for the purposes of language processing, including
discourse context (15–20), local linguistic context (21–26), syn-
tactic context (27, 28), and more global world knowledge (29–31).
All these variables likely influence the probability of any word
w, but they are not easily quantified. We chose to approximate
P(W |C) by using a standard quantitative probabilistic model, an
N-gram model, which treats C as consisting only of the local lin-
guistic context containing the previous N − 1 words. This sim-
plification allows Eq. 1 to be estimated cross-linguistically from
large corpora, and is an approximation to the true information
content of a word that has been used extensively in psycholin-
guistics. In addition, there are several possible ways to measure
word length. Here, we primarily use orthographic length because
it is readily available from corpora and tends to be highly corre-
lated with both phonetic length and production time. However,
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we also present results in English, German, and Dutch measuring
length in number of phonemes and number of syllables.
With these measures, we tested whether average information

content or frequency is a better predictor of word length by
computing the information conveyed by each word in Czech,
Dutch, English, French, German, Italian, Polish, Portuguese,
Romanian, Spanish, and Swedish. In each language, we computed
Spearman rank correlations between (i) information content and
length and (ii) frequency and length. This measure allowed us to
test correlations without making assumptions about the para-
metric form of the relationship.

Results
The solid and striped bars in Fig. 1 show correlations in the 11
languages between orthographic length and frequency, and ortho-
graphic length and information content, as measured by two-gram,
three-gram, and four-grammodels. Because of the size and form of
the Google dataset, these N-gram models were not smoothed (al-
though see SI Text). Statistical significance was assessed by using
Z-tests on bootstrapped estimates of the difference betweenwithin-
language correlations. In the two-grammodel, information content
is more strongly correlated with length than frequency across all 11
languages (P < 0.01, Z > 2.58 for each language). The three-gram
models show similar patterns, showing significant effects in the
predicted direction for 10 of the 11 languages (P< 0.001,Z> 3.30),
with the exception of Polish, in which the trend is not significant
(P > 0.47, Z = 0.71). The four-gram results show effects in the

predicted direction for seven of 11 languages; all differences are
significant (P < 0.001, |Z | > 4.91) except for Swedish (P = 0.29,
Z= 1.05). The decreasing consistency of results for higherN-gram
sizes likely results from increased estimation error caused in part by
our use of Google N-gram counts, as information content in large
N-gram models is more difficult to estimate than frequency, and
estimation error deflates correlations (Table S1). In general, we
take three-gram data—with 10 of 11 languages showing the pre-
dicted result—as the most representative finding, because the
three-gram results have the highest overall correlations.
Because frequency and information content are not in-

dependent, we also computed how well each variable predicts
length controlling for effects of the other. The triangles in Fig. 1
show partial correlations: frequency and length, partialing out
information content; and information content and length, parti-
aling out frequency. In several languages, the partial correlation
of frequency is close to zero, meaning that the effect of frequency
is largely a result of the fact that it is correlated with information
content. In most languages, the partial correlation of length with
information content, controlling for frequency, is larger even than
the absolute correlation between length and frequency.
Information content and frequency exhibit qualitatively differ-

ent relationships with length. Fig. 2 shows the mean length for
(binned) frequency and information content in English, which is
typical of the languages here with large effect sizes. The spread in
the gray lines illustrate that length is more predictable from in-
formation content than from frequency. Frequency does not pre-
dict word length substantially for lower-frequency words: words in
low unigram probability bins have approximately the same average
length. In contrast, length varies as a function of information over
almost its entire range of values, with the exception of just the few
words with the very lowest information content. This pattern is
observed in 11 of 11 languages and indicates that information
content is not a good predictor of length for the 5% to 20% least
informative (and typically also most frequent) words. This is po-
tentially caused by the fact that, in text on the Internet, many long
words occur in highly predictable collocations such as “all rights
reserved.”These long words are highly predictable, conveying little
information, and thus increase the mean length of the least in-
formative words.
To ensure that the results were not driven by artifacts of

the Google dataset, we replicated this study in English by using
the British National Corpus (BNC) (32), state-of-the-art N-
gram smoothing techniques, and separate training corpora for
P(W = w |C = c) and P(C = c |W = w). This was not possible in
all languages because large enough corpora are not available.† In

0.0

0.1

0.2

0.3

0.4
Average Information Content
Frequency
Partial correlation

N = 2

0.0

0.1

0.2

0.3

0.4 N = 3

C
Z

E
C

H

D
U

T
C

H

E
N

G
L

IS
H

F
R

E
N

C
H

G
E

R
M

A
N

IT
A

L
IA

N

P
O

L
IS

H

P
O

R
T

U
G

U
E

S
E

R
O

M
A

N
IA

N

S
PA

N
IS

H

S
W

E
D

IS
H

C
or

re
la

tio
n 

w
ith

 le
ng

th

0.0

0.1

0.2

0.3

0.4 N = 4

Fig. 1. Correlations between information content and word length (solid)
and between frequency (negative log unigram probability) and word length
(striped) for two-gram, three-gram, and four-gram models. Error bars show
bootstrapped 95% confidence intervals. Triangles show partial correlations
(frequency and length partialing out information content; information con-
tent and length partialing out frequency).
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Fig. 2. Relationship between frequency (negative log unigram probability)
and length, and information content and length. Error bars represent SEs
and each bin represents 2% of the lexicon.

†Europarl (33), for instance, contains only approximately 50 million words per language-
approximately one 2,500th the size of the non-English Google dataset. Bootstrapping
revealed this to be too small to yield reliable estimates of information content.
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these data, the correlation between frequency (negative log
unigram probability) and length was 0.121. The correlation for
information content was 0.161 with the use of two-gram models
and 0.168 with the use of three-gram models. Both N-gram
correlations were significantly higher than the frequency corre-
lation (P < 0.001, Z > 9.49). Interestingly, this analysis reveals no
partial effects of frequency: the correlation of frequency parti-
aling out information content was negative (−0.009 for two-gram
and −0.009 for thee-gram models), but not significantly so (P >
0.13, Z < −1.48 for each comparison). The correlations for two-
gram and three-gram models partialing out frequency were 0.106
and 0.117, respectively, both of which were significantly greater
than zero (P < 0.001, Z > 16.90). These results show qualitatively
similar results to the Google data. The numerical pattern of cor-
relations differs somewhat from the Google data, likely because
the BNC contains only 100 million words, only one 10,000th the
size of the Google dataset for English.
In English, German, and Dutch, detailed phonetic information

is available from the CELEX database (34). For these languages,
we also computed the correlations measuring length in number of
phones and also number of syllables. This resulted in two com-
parisons between information content and frequency for each
language and each N-gram model. For two-gram and three-gram
models, eight of eight English and Dutch correlations all are sig-
nificant in the predicted direction (P < 0.001, Z > 9.19 for each
comparison), with information content a better predictor of length
than frequency. For German, phonetic length and syllable length
trend in the right direction for two-grammodels, but only the latter
is statistically significant (P < 0.001, Z = 5.22). For three-gram
models, German is significant in the wrong direction for length
measured in phones (P < 0.001, Z= −4.42), but not significant for
length measured in syllables (P = 0.29, Z = 1.04). Like the or-
thographic results, the four-gram results are more mixed, with two
of two significant effects in the predicted direction for English (P<
0.001, Z > 12.43), zero of two significant effects in the predicted
direction for German (P < 0.001, Z > −5.49), and marginally sig-
nificant effects each way for Dutch. In general, these result show
similar patterns to the orthographic measure of length used here
earlier. Indeed, in several of the other languages studied (e.g.,
Spanish, Italian, Portuguese), there is a close relationship between
the orthography and phonetics, meaning that these results likely
generalize to phonetic length as well.

Discussion
Our results indicate that information content is a considerably
more important predictor of word length than frequency. These
results hold across languages with varying degrees of morpholog-
ical inflection, indicating that the results are generally true re-
gardless of how languages use morphemes to encode information.
We expect that our basic theory—that information content pre-
dicts word length—should generalize to languages with amore free
word order, although it is not clear that N-gram contexts could be
used to estimate information content in such languages.
One likely mechanism for how the lexicon comes to reflect

predictability is that information content is known to influence
the amount of time speakers take to pronounce a word: words

and phones are given shorter pronunciations in contexts in which
they are highly predictable or convey less information (7, 13, 27,
28, 35–38). If these production patterns are lexicalized, word
length will come to depend on average informativeness.
Our results show significant partial effects of frequency, and it

may be that lexicons assign word lengths based on the effective
information content for the language processing system. People’s
expectations about upcoming words are influenced by word fre-
quency, even controlling for information content and other rele-
vant factors (39). This means that a communication systemwhich is
optimal for people’s probabilistic expectations may include fre-
quency effects. Alternatively, the frequency effects might be illu-
sory: a model of information content that takes into account more
than N-gram contexts—for instance, global discourse context or
world knowledge—may explain all the variance frequency explains.
In general, we take these results to necessitate a revision of

Zipf’s view of frequency and lexical efficiency. The most com-
municatively efficient code for meanings is one that shortens the
most predictable words—not the most frequent words. Human
lexicons are these types of information—theoretically efficient
codes for meaning, constructed to respect the interword statis-
tical dependencies of normal language use.

Materials and Methods
In Fig. 1, we approximated the information content of each word by using
an unsmoothed N-gram model trained on data from Google (40). The size
and form of the Google dataset makes standard smoothing techniques in-
feasible and also likely unnecessary, as we study only the most frequent
words and these would not be highly affected by smoothing. To uniformly
define lexicons across languages, we extracted the 25,000 most frequent
strings in the Google dataset for each language that also occurred in the
OpenSubtitles section of the OPUS Corpus (41). This was necessary because
the Google dataset was gathered from the internet and contains many
frequent strings that are not words (e.g., “aaaaa” and “aaaaaa”). The most
frequent words in the dataset were used because information content can be
estimated reliably only from a large number of occurrences. For each lan-
guage, we computed the Spearman correlation between frequency (negative
log unigram probability‡) and length, information content and length, and
the corresponding partial correlations. We present Spearman correlations
because length is related nonlinearly to frequency and information content,
although Pearson correlations give nearly identical results.

ForourreplicationontheBNC(32),weestimatedEq.1bysplittingtheBNCinto
twohalves. Thefirsthalfwasused to trainanN-grammodel for computingP(W=
w | C = c) by using the SRILM toolkit (42) with modified Kneser–Ney smoothing
(43). The N-grammodel was evaluated on the second half of the corpus to esti-
mate Eq. 1. As with the Google data, we evaluated the 25,000 most frequent
words that also occurred in the OpenSubtitles section of the OPUS Corpus.
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