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Abstract: In syntactic dependency trees, when arcs are drawn from syntactic heads to dependents, they rarely
cross. Constraints on these crossing dependencies are critical for determining the syntactic properties of
human language, because they define the position of natural language in formal language hierarchies. We
study whether the apparent constraints on crossing syntactic dependencies in natural language might be
explained by constraints on dependency lengths (the linear distance between heads and dependents). We
compare real dependency trees from treebanks of 52 languages against baselines of random trees which are
matched with the real trees in terms of their dependency lengths. We find that these baseline trees have many
more crossing dependencies than real trees, indicating that a constraint on dependency lengths alone cannot
explain the empirical rarity of crossing dependencies. However, we find evidence that a combined constraint
on dependency length and the rate of crossing dependencies might be able to explain two of the most-studied
formal restrictions on dependency trees: gap degree and well-nestedness.

Keywords: crossing dependencies; dependency length; dependency treebanks; efficiency; language pro-
cessing; syntax

1 Introduction

Two goals of linguistics are to characterize natural languages as formal systems, and also as codes for
communication. The efficiency hypothesis, pursued by linguists for over a century, claims that these two
goals are related, and that the formal properties of natural language are best explained in terms of maximizing
the amount of information transferred while minimizing the complexity of language production and
comprehension (Chomsky 2005; Ferrer-i-Cancho and Solé 2003; Gibson et al. 2019; Haspelmath 2008; Hawkins
1994; Hockett 1960, 2004, 2014; von der Gabelentz 1901; Zipf 1949). In recent years, it has become possible to
test such theories quantitatively using corpora of many languages.

Within the framework of the efficiency hypothesis, one influential proposal is dependency length
minimization (DLM). DLM is the idea that words in syntactic dependencies are under a pressure to be close to
each other in linear order. Syntactic dependencies are relations between words as illustrated in Figure 1. The
connection between DLM and efficiency is that when dependency lengths are minimized, more memory-
efficient generation and parsing is possible (Gibson 1998). For recent reviews onDLM, see Dyer (2017), Liu et al.
(2017), and Temperley and Gildea (2018). DLM has demonstrated considerable power for explaining a number
of language universals involving word order, such as Greenberg’s harmonic word order correlations (Green-
berg 1963; Hawkins 1994), as well as exceptions to them (Gildea and Temperley 2010; Temperley 2008).

In this work, we examine the claim that DLM might be the underlying factor behind an even more basic
property of syntax: the distribution of crossing dependencies. When dependency arcs are drawn above a
sentence as in Figure 1, they may cross. But empirically, in real trees, this happens rarely and with formal
restrictions (Ferrer-i-Cancho et al. 2018; Havelka 2007; Nivre and Nilsson 2005). As we review below, the

*Corresponding author: Himanshu Yadav, University of Potsdam, Potsdam, Germany, E-mail: hyadav@uni-potsdam.de
Samar Husain, Indian Institute of Technology Delhi, Delhi, India
Richard Futrell, University of California Irvine, Irvine, USA

Linguistics Vanguard 2021; 7(s3): 20190070

https://doi.org/10.1515/lingvan-2019-0070
mailto:hyadav@uni-potsdam.de


properties of these crossing dependencies are of significance for both formal linguistics and natural language
processing.

Recently, it has been proposed that the rarity of crossing dependencies is a side-effect of DLM, such that
there is no need to posit additional constraints against crossing dependencies in order to explain the distri-
bution of crossing arcs observable in real linguistic trees (Ferrer-i-Cancho 2006, 2016). Here we examine
whether the distribution of crossing dependencies observable in dependency treebanks can be explained in
terms of constraints on dependency lengths, or whether other factors are required.

Results show that constraints on dependency lengths do not suffice to explain the rarity of crossing
dependencies observed in corpora. However, we show that a combined constraint on both dependency length
and the rate of crossing dependenciesmight be able to explain two of themost-discussed formal restrictions on
crossing dependencies: gap degree and well-nestedness.

2 Background

The current work brings together the fields of formal language theory, natural language processing, graph
theory, and corpus linguistics. Here we review previous work on crossing dependencies from these different
perspectives. We show the importance of crossing dependencies for the formal characterization of natural
language and for the development of natural language processing algorithms, and review previous results
about the relationship between dependency length and crossing dependencies, both from theoretical and
empirical perspectives.

2.1 Crossing dependencies and formal grammar

A striking result from the last three decades of research in formal linguistics is that the formal characterization
of the syntax of human language (in the sense of Chomsky 1959; Chomsky and Schützenberger 1963; Hopcroft
and Ullman 1979) is deeply related to the distribution of crossing dependencies in dependency trees.

In syntactic theory, crossing dependencies correspond to displacement phenomena, and are modeled
using a distinct kind of structure from non-crossing dependencies. For example, in phrase-structure frame-
works, displacement phenomena are modelled using slash-passing (Pollard and Sag 1994; Steedman and
Baldridge 2011); inMinimalist frameworks, they aremodeled using a distinct structure-building operation MOVE

(Boston et al. 2010; Chomsky 1995; Michaelis 1998).
The formalmechanismswhich have been invoked to describe crossing dependencies turn out to be crucial

for the formal language-theoretic characterization of natural language, because they involve operations that
go beyond context-free grammar. To see the connection between crossing dependencies and formal language
theory, first note that dependency trees with no crossing dependencies—which are called projective—
correspond exactly to structures generated by lexicalized context-free phrase-structure grammars (Marcus
1965). So if there were no crossing dependencies in linguistic trees, then natural language would be context-
free. Crossing dependencies indicate exactly those cases where natural language moves beyond

Figure 1: An example dependency tree. Arrows point from heads to dependents. Each dependency arc is labeled with its
dependency length: the distance from the head to the dependent, measured inwords. This tree has one crossing dependency. All
crossing dependencies in all figures are marked in red. It has gap degree 1, edge degree 1, end-point crossings 1, HDD 2, and is
well-nested.
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context-freeness, and limitations on crossing dependencies indicate exactly how and when natural language
can deviate from context-freeness.

Human language is known to be non-context-free (Shieber 1985), but it does not appear to be formally
unrestricted. The consensus is that human language occupies a language class called mildly context-sen-
sitive between the context-free and fully context-sensitive languages (Joshi et al. 1991; Weir 1988). These
mildly context-sensitive languages are defined by formal constraints which turn out to be equivalent to
constraints on crossing dependencies. In particular, most mildly context-sensitive formalisms have bounds on
a quantity called gap degree, which has been shown to relate to formal restrictions on crossing dependencies
byKuhlmann andNivre (2006). Somemildly context-sensitive formalisms also induce a constraint calledwell-
nestedness, which can also be reduced to constraints on crossing dependencies (Bodirsky et al. 2005). For
linguistic considerations involving these constraints, seeMaier and Lichte (2009), Chen-Main and Joshi (2010),
Mambrini and Passarotti (2013), Miletic and Urieli (2017), and Yadav et al. (2017).

Above, we sketched the connection between crossing dependencies and formal syntax. Because of this
connection, it is particularly interesting that the distribution of crossing dependencies in natural language
might be explained byDLM.Any theorywhich is capable of explaining constraints on crossing dependencies is
capable of explaining and characterizing the formal language class of natural language, thus answering some
of the most basic questions in linguistics.

2.2 Crossing dependencies and parsing algorithms

The nature of formal grammars is intimately connected to parsing algorithms, both in the context of
psycholinguistics and computational linguistics. For example, based on behavioral experiments investigating
human processing difficulty in crossing dependencies and embedded dependencies for Dutch and German
native speakers, Bach et al. (1986) argued that a push-down automaton cannot form the basis for natural
language parsing by humans cross-linguistically. Subsequently, Joshi (1990) proposed an embedded push-
down automaton (EPDA) to account for the results of Bach et al. (1986) and made the connection between
EPDA and formal grammars such as Tree-Adjoining Grammars, Categorial Grammars and Head Grammars.

Given this context, crossing dependencies are also of interest in the design of dependency parsers in
natural language processing. Efficient parsing algorithms are only possible when there are formal constraints
on crossing dependencies (Eisner and Giorgio 1999; Gómez-Rodríguez et al. 2010; Kuhlmann 2013; Pitler et al.
2013).

2.3 Crossing dependencies and dependency length minimization

Ferrer-i-Cancho (2006) proposed that the apparent rarity of crossing dependencies is a consequence of DLM.
This proposal is based the following graph-theoretic observation: when one arranges the nodes of a
dependency tree in order tominimize dependency length—i.e., solving the Optimal Linear Arrangement (OLA)
problem from graph theory (Chung 1984; Gildea and Temperley 2007; Harper 1964; Hochberg and Stallmann
2003; Park and Levy 2009; Shiloach 1979)—one gets treeswith nearly zero crossing dependencies for sentences
of reasonable length. In subsequent work, Ferrer-i-Cancho (2014, 2016) has given analytical formulas to
approximately predict the number of crossing dependencies in arbitrary dependency trees given knowledge of
dependency lengths, finding that the formulas gave only slight overestimations of the number of crossing arcs
in selected linguistic trees. Relatedly, Ferrer-i-Cancho and Gómez-Rodríguez (2016) have documented that the
rate of crossing dependencies in dependency treebanks cannot be explained by a specific bound on the
number of crossing arcs allowed per sentence length, and is instead a function of the lengths of dependencies
in the tree.

Making explicit the connection with formal language theory, Gómez-Rodríguez et al. (2019) have exam-
ined dependency length in random linear arrangements (RLAs) of trees from dependency treebanks, while
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controlling for proposed formal restrictions on crossing dependencies. They find that formal constraints on
crossing dependencies tend to reduce the dependency lengths in such trees, arguing that DLM is the factor that
explains the apparent formal language class for natural language. As we will see, we take the opposite
approach: we control for the empirical distribution of dependency length and look at the formal properties of
the resulting RLAs. This enables us to determine whether dependency length as an independent variable is
sufficient to explain formal properties as a dependent variable.

In work closely related to ours, Lu and Liu (2016) have presented some complicating evidence for the
hypothesis that DLM can explain the rarity of crossing dependencies. They find that minimizing mean de-
pendency length in random trees does correlate with a reduction in crossing dependencies, but that realistic
rates of crossing dependencies are only attained for very small values of mean dependency length, much
smaller thanwhat is found in natural languages. In the current work, we present conclusive evidence that DLM
(alone) cannot explain the actual rate of crossing dependencies found in natural language.

3 Methods

We are interested in explaining two properties of dependency trees: (1) the rate of crossing dependencies
(average number of crossing arcs at each sentence length), and (2) the formal properties of crossing
dependencies. To do this, we will compare the crossing rate and formal crossing properties in real trees drawn
from dependency treebanks against a baseline of random trees which are generated under explicit constraints
on dependency length.

3.1 Definitions

A dependency tree t is a directed labeled tree with nodes corresponding to words and arcs ⟨h, d⟩ called
dependencies, where h identifies aheadnode andd identifies adependentnode.We say a dependency ⟨h,d⟩
in tree t is crossing if there exists a nodem intervening between h andd in the linear order of t such thatm is not
a transitive descendant of h. So the dependency ⟨woman, who⟩ in Figure 1 is crossing, because arrived is not a
descendant of woman. On the other hand, the dependency ⟨think, arrived⟩ is not crossing, because all the
intervening nodes are descendants of think.

A variety of formal constraints on crossing dependencies have been proposed in the formal grammar and
dependency parsing literature. Together, we call these constraints formal crossing constraints. We study the
following formal crossing constraints, with formal definitions given in Supplementary Materials Section S2:
gap degree (Figure 2), well-nestedness (Figure 3), edge degree (Figure 4), end-point crossings (Figure 4), and
heads’ depth difference (Figure 5). Gap degree, well-nestedness, and end-point crossings are relevant for the
efficiency of exact parsing algorithms. Edge degree and heads’ depth difference have also been implicated in
human parsing difficulty (Yadav et al. 2017, 2020).

Figure 3: Example of well-nested and ill-nested tree
configurations.
(a) Well-nested. (b) Ill-nested.

Figure 2: Example of a configuration with gap degree 2.
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3.2 Baselines

3.2.1 Random trees with controlled dependency length

Our first baseline is called random trees. This baseline consists of samples from a uniform distribution over
tree structures of a given length, under the constraint that each random treemust have the same distribution of
dependency lengths as some attested dependency tree.

In order to generate random trees with controlled dependency length, we first define the dependency
length (DL) sequence of a dependency tree as the list of lengths of each dependency, sorted in order of
increasing length. For example, the DL sequence for the tree in Figure 1 is [1, 1, 1, 1, 2, 2, 3].1 To generate the
random trees baseline, we take each attested tree t with n words from a dependency treebank, and generate a
random tree of length nwith the sameDL sequence as t. Formore details, see SupplementaryMaterials Section
S2. For example, a random tree with the same DL sequence as in Figure 1 is shown in Figure 6.

Following previous work (Yadav et al. 2019), we generate these controlled random trees by rejection
sampling. Given an attested dependency tree t with length n and DL sequence d, we repeatedly generate
random trees of length n until we find onematching the desired DL sequence d. This procedure is slow because
very few random trees match the desired DL sequence, especially for long sentences. Therefore we are

Figure 5: Example of tree configuration with HDD 2.

Figure 4: Examples of trees with edge degree 2 and end-point cross-
ings 1 and 2.
(a) Edge degree 2, end-point crossings 1. (b) Edge degree 2, end-point
crossings 1.

1 Dependency trees as found in dependency treebanks usually have a virtual “root node” at the beginning of each sentence. We do
not consider these root nodeswhen calculatingDL sequence, butwedo consider themwhen calculating the number of crossing arcs
and their properties.
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currently restricted to examining sentences of less than 12words. For some evidence that the patternswe report
here are likely to hold qualitatively for longer sentences as well, see Section 4.1.

Our baseline trees control for the complete empirical distribution of dependency lengths. This means that
any function of the set of dependency lengths will be identical between real trees and our baseline trees.

3.2.2 Random linear arrangements with controlled dependency length

As a second baseline, we also generate random linear arrangements (RLAs) of original trees, again controlling
the DL sequence. A random linear arrangement of a labeled tree t is a permutation of the nodes of t, which when
applied to dependency trees scrambles the order of words while keeping the dependency relationships among the
words the same. For example, a random linear arrangement of the tree from Figure 1 is shown in Figure 7.

These random linear arrangements control for all the topological properties of the original trees, such as
their depth, arity, hubbiness, etc., which are known to constrain the possible number of crossing arcs (Ferrer-i-
Cancho et al. 2018). These constrained random linear arrangements are generated by the same rejection
sampling procedure as for random trees.

3.2.3 Controlling crossing rate

We also experiment with baselines that simultaneously control for dependency length and crossing rate. In
this case, we are interested in the formal crossing constraints in the resulting random trees. In these baselines,
given an attested tree t of length n from a treebank, we randomly generate (again by rejection sampling) a
random tree of length nwith the sameDL sequence as t and the samenumber of crossing dependencies as t. For
results on random trees controlling only the rate of crossing dependencies, but not the dependency length
distribution, see Yadav et al. (2019).

3.3 Statistical methods

We are interested in whether real trees differ from baseline trees in their crossing rates and formal crossing
constraints. Therefore, our dependent variables are crossing rates and rates of violations of formal crossing
constraints. These dependent variables can be seen as functions of sentence length, tree depth, and/or arity:
for example, it may be the case that the distribution of gap degree differs between real and random trees as a
function of tree depth but not sentence length. When some tree property is not significantly different between
real and baseline trees, then we have no evidence that an additional constraint is needed to explain that

Figure 6: A random tree matched with Figure 1 for length and DL sequence [1, 1, 1, 1, 2, 2, 3] (see text). This tree has two crossing
dependencies (marked in red). It has gap degree 1, edge degree 1, end-point crossings 1, HDD 1, and is ill-nested.

Figure 7: A random linear arrangement of the tree in Figure 1with the sameDL sequence of [1, 1, 1, 1, 2, 2, 3]. This tree has two crossing
dependencies (marked in red). This tree has gap degree 1, edge degree 1, end-point crossings 1, HDD 1, and is well-nested.
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property. On the other hand, if the tree property is significantly different, then we have evidence that there
must be some constraint, beyond what has already been controlled, to explain that property.

To test whether there is statistical evidence for a difference between real and baseline trees, we use Poisson
regression, which models rates of events. Given a collection of trees, some of them real and some of them
baseline, we fit a regression to predict formal properties of the tree. For example, to predict gap degree as a
function of sentence length, we fit values β to minimize the square of the error ϵ:

log yi = β0 + βlli + βr1real + βrlli1real + ϵ, (1)

where yi is the gap degree of the ith sentence, li is the length of the ith sentence, and 1real is an indicator variable
with value 1 for a real tree and 0 for a baseline tree. We evaluate whether there is a significant difference
between real and random trees by checking whether a regression as in Eq. (1) is a significantly better fit to the
data than a regression lacking the terms in 1real according to a χ2 test on the likelihood ratio. For full details on
these regressions, see the Supplementary Materials Sections S3 and S4.

When fitting regressions to corpus data, in order to achieve the best statistical power, we sometimes
combine trees from treebanks ofmultiple languages.Whenwe do so,we add random intercepts by language to
our regression to account for inter-language differences (Baayen et al. 2008; Barr et al. 2013).

3.4 Data sources

We use treebanks from Surface-syntactic Universal Dependencies (SUD) v.2.4 (Gerdes et al. 2018, 2019), based on
treebanks originally annotated as part of the Universal Dependencies (UD) project (Nivre 2015, 2019) which have
been converted to reflect syntactic dependencies rather than the more semantic dependencies favored by UD. We
chose to use SUD because theories such as DLM have nearly always been formulated in terms of surface syntactic
dependencies (Liu et al. 2017; Temperley and Gildea 2018) (for a discussion of the difference between UD and SUD
from the perspective of dependency length, see Yan and Liu 2019).2 Following previous work using dependency
treebanks for linguistic-typological research, we remove all punctuation nodes from dependency trees.

3.5 Languages tested

We test on a total of 52 languages, taking the largest SUD treebank per language and excluding treebanks with
less than 500 sentences and ancient languages.3 We performed all studies initially on 19 languages as a pilot
study, then preregistered our methods and predictions before proceeding to test on the remaining languages.4

4 Results

4.1 Controlling only dependency length

As shown in Figures 8 and 9, we find that baseline trees with controlled DL sequence havemanymore crossing
dependencies than real trees. The overall rate of crossing dependencies is significantly higher in baseline trees
than in real trees (p < 0.001 for both random trees and random linear arrangements). This pattern also holds in
individual regressions per language (p < 0.001 for every language, for both random trees and random linear
arrangements).5

2 In preliminary work, we also experimented with the original UD treebanks. We found that these have a much lower rate of
crossing dependencies than SUD treebanks, by as much as a factor of 10, often due to the handling of auxiliary verbs. The results
regarding formal crossing constraints are qualitatively similar between the two annotation styles.
3 We excluded the following ancient languages: Latin, Ancient Greek, Sanskrit, Old Church Slavonic, Old Russian, Old French.
4 Preregistration available at https://aspredicted.org/ii67u.pdf.
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Our study is limited in that we can only generate baseline trees for short sentences. However, we believe
that the results we have reported here will continue to hold qualitatively for longer sentences as well. As an
example, in Figure 10, we show the rates of crossing dependencies for real languages up to sentence length 30,
along with the regressions that we fit to sentences of length up to 11. The low growth rate of crossing de-
pendencies in real trees continues for longer sentences. If the trends seen in this plot continue, then the rate of
crossing dependencies in the baseline trees will likely continue to be much higher than that in the real trees.

4.2 Controlling dependency length and crossing rate

Now we turn to the results about comparing formal crossing constraints (gap degree, edge degree etc.) in real
trees versus baseline trees. The critical p-values are summarized in Table 1; a low p-value indicates a significant
difference between real and random trees, and a high p-value indicates weak or no evidence for a difference.
The results comparing against random linear arrangements are summarized in Table 2. Full regression results
are given in the Supplementary Materials in Table 2.

From these tables, a striking and consistent pattern emerges: well-nestedness is not significantly different
between real and baseline trees, and gap degree is only significantly different between real trees and random tree
structures. When comparing real trees and random linear arrangements, the gap degree distributions are statis-
tically nearly indistinguishable. On the other hand, the remaining three formal crossing constraints—edge degree,
end-point crossings, andHDD—are dramatically differentwhen comparing real trees against any randombaseline.

4.3 Interpretation

When we do not control crossing rate, our baselines show what dependency trees would look like if they were
constrained only to have a certain distribution of dependency lengths.We find that such trees havemanymore
crossings than real trees, consistently across languages, indicating that the distribution of dependency lengths
in natural language does not suffice to explain the low rate of crossing dependencies. In other words, de-
pendency length can be minimized to the point that we actually find in natural language, without reducing
crossing arcs to the rate that we actually find in natural language.
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Figure 8: Mean numbers of crossing dependencies per sentence length, for real and baseline trees matched in dependency
length. RLA stands for random linear arrangement. Languages are indicated by their ISO codes as given in the SUD corpus files
(ISO 639-3 2007). The dashed black lines show the fit of Poisson regressions predicting the number of crossing dependencies
from the log sentence length.

5 See Supplementary Materials Sections S3 and S4 for model specifications and detailed results.
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Figure 9: Mean numbers of crossing dependencies per sentence length, per language, for real trees (blue) and baseline trees
matched in dependency length (red and green). Shaded areas show 95% confidence intervals of themean. N represents the total
number of trees for which we generated baseline trees.
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However, when we do control crossing rate in addition to dependency length, we find that the baseline
trees have very similar gap degree and well-nestedness to real trees. The result suggests that well-nestedness
may not be a true constraint on dependency trees, but rather an epiphenomenon arising from more generic
restrictions on dependency length and crossing rate. Gap degree, in turn, may be an epiphenomenon arising
from restrictions on dependency length, crossing rate, and tree depth, as indicated by the fact that gap degree
is significantly different between real trees and random tree structures, but not significantly different between
real trees and random linear arrangements of the real trees.

It might be surprising that DL-controlled baseline trees show a different distribution of crossing de-
pendencies from the real trees. It turns out that the typical distribution of dependency length in real trees—
which tends toward short dependencies—is compatible with high edge degree, high end-point crossings, and
high HDD, even though these are not found in real trees. For example, in order to have an edge degree of 4 and
end-point crossings 3, the minimal DL sequence requirement is [1, 1, 1, 2, 3, 3, 5] (see Figure 11(b)). Such a
dependency length distribution is not uncommon in real language trees. To make the example concrete, a
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Figure 10: Crossing rates for real
sentences up to length 30,
along with regression fits from
Figure 8 for sentences of length
<12 for real and baseline trees.

Table : p-Values on the difference between real trees and random trees controlled for dependency length and crossing rate. For
statistical methods see Section .. Non-significant values in italics.

Crossing constraint ∼Length ∼Depth ∼Arity ∼∑DL

Gap degree <. <. <. <.
Well-nestedness . . . .
Edge degree <. <. <. <.
End-point crossings <. <. <. <.
HDD <. <. <. <.

Table : p-Values on the difference between real trees and random linear arrangements controlled for dependency length and
crossing rate. For statistical methods see Section .. Non-significant values in italics.

Crossing constraint ∼Length ∼Depth ∼Arity ∼∑DL

Gap degree . . . .
Well-nestedness . . . .
Edge degree <. <. <. <.
End-point crossings <. <. <. <.
HDD <. <. <. <.

10 Yadav et al.



simple sentence like A friend of mine gave a book to John yesterday has DL sequence [1, 1, 1, 1, 1, 2, 3, 3, 5]; as
shown in Figure 11, the corresponding random trees with same dependency length distribution could easily
have end-point crossings up to 3 and edge degree up to 4.

4.4 Effect of word order variability

As shown in Figure 9, the rate of crossing dependencies in some languages (e.g., Basque) seems close to that in
random baselines, while other languages are dramatically different from the baselines (e.g., English). This
suggests that languages could have different distributions of crossing dependencies based on the degree of
word order flexibility permitted. Here we explore if word order flexibility in a corpus has any influence on the
distribution of crossing dependencies, building on work by Liu (2010), who studies proportions of crossing
dependencies in crosslinguistic treebanks from a typological perspective. In particular, we test whether lan-
guages with more word order freedom have more crossing dependencies, and whether they have different
distributions of the formal crossing constraints.

We operationalize word order freedom as the degree of variability in the order of subject, verb, and object,
quantified using the entropy of orders of main verbs along with their subj and comp:obj dependents, as in
Futrell et al. (2015b). We divide corpora into high-flexibility and low-flexibility groups according to whether
this entropy is greater than or lower than the average, respectively.6

As shown in Table 3, the rate of crossing dependencies with respect to sentence length is significantly
different between languages with high word-order freedom and languages with low word-order freedom
(p=0.01). Table 3 also shows that the two groups of languages are also distinct configurationallywith regard to
various crossing constraints.

Figure 11: Demonstration of high rate of crossings, high edge degree, and high end-point crossings in random trees that have the
same DL sequence as the real tree of a simple English sentence. (a) is a real language tree with DL sequence [1, 1, 1, 1, 1, 2, 3, 3, 5].
(b) and (c) are DL-controlled random trees matched for length and DL sequence [1, 1, 1, 1, 1, 2, 3, 3, 5]. Tree (b) has four crossing
dependencies (marked in red); edge degree 4 and endpoint crossings 3 (see arc 3→8). Tree (c) has four crossing dependencies;
edge degree 3 and endpoint crossings 2 (see arc 3→8).

6 We note that each corpus contains texts from different genres, which may affect the observed word order flexibility. In addition,
while the results consider all the dependency relations in the treebank, the current classification is based on verb–argument
dependencies. A classification based on additional dependency types will be taken up in future research. Corpora in the high-
flexibility group: Afrikaans, Arabic, Armenian, Basque, Catalan, Croatian, Czech, Danish, Dutch, Estonian, Galician, German,
Hungarian, Italian, Latvian, Polish, Romanian, Slovak, Spanish, Ukrainian, and Urdu. Corpora in the low-flexibility group:
Bulgarian, Chinese, English, Finnish, French, Greek, Hebrew, Hindi, Indonesian, Irish, Italian, Japanese, Korean, North Sami,
Norwegian, Persian, Portuguese, Russian, Serbian, Swedish, Tamil, Turkish, and Vietnamese.
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5 Conclusion

We assessed the promising hypothesis that the distribution of crossing dependencies in natural languagemight be
explained by a simple functionally-motivated principle of dependency length minimization (DLM). We found that
constraints on dependency lengths alone cannot suffice to explain the low rate of crossing dependencies
observable in dependency treebanks. Specifically, we found that there are many possible tree structures and word
orders that have the same dependency lengths as real trees and yet have many more crossing dependencies than
real trees. Some further constraint on trees is necessary to explain the low rate of crossing dependencies in natural
language, although not necessarily a direct constraint against crossing dependencies.

We have found that DLM alone does not fully explain the rate of crossing dependencies. However, we
stress that DLM retains strong explanatory power for word order correlations, length-based word order pref-
erences, and the overall distribution of dependency lengths in corpora (Chen andGerdes 2019; Ferrer-i-Cancho
2004; Futrell et al. 2015a; Liu 2008). So the results here should not be taken as evidence against the DLM
hypothesis, although they do imply that some other factor beyond DLM is required to explain the distribution
of crossing dependencies in particular.

Our results are also favorable for DLM in the followingway:we find that controlling for dependency length
and the rate of crossing dependencies allows us to potentially explain the distribution of two formal properties
of crossing dependencies—gap degree and well-nestedness—at least in short sentences. These two properties
have been used to define the mildly context-sensitive hierarchy; therefore, our results suggest that this formal
language class might be fully explainable in terms of functionally-motivated constraints such as DLM and
another currently-poorly-understood constraint that lowers the rate of crossing dependencies.

Finally, we find evidence that the rate of crossing dependencies varies significantly based on word order
flexibility of a language. The results also show that the two groups of languages are different with regard to
various crossing constraints. At the same time, the rate of crossings in both the groups remains well below the
rate in the random baselines. These results leave open the possibility of differential thresholds of crossing
constraints across the two groups. A more detailed investigation on the implication of typological differences
for crossing constraints will be taken up in future research.

Acknowledgments: We thank the three anonymous reviewers for helpful suggestions. This work was sup-
ported by a gift from the NVIDIA Corporation.
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