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Abstract 

In everyday communication, speakers make errors and produce language in a noisy 

environment. Recent work suggests that comprehenders possess cognitive mechanisms 

for dealing with noise in the linguistic signal: a noisy-channel model. A key parameter of 

these models is the noise model: the comprehender’s implicit model of how noise affects 

utterances before they are perceived. Here we examine this noise model in detail, asking 

whether comprehension behavior reflects a noise model that is adapted to context. We 

asked readers to correct sentences if they noticed errors, and manipulated context by 

including exposure sentences containing obvious deletions (A bystander was rescued by 

the fireman in the nick time.), insertions, exchanges, mixed errors, or no errors. On test 

sentences (The bat swung the player.), participants’ corrections differed depending on the 

exposure condition. The results demonstrate that participants model specific types of 

errors and make inferences about the intentions of the speaker accordingly. 

 

 

 

Keywords: sentence comprehension; noisy-channel; rational inference; adaptation; 

error correction 
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Everyday language use occurs amid myriad sources of noise. In a conversation, 

the speaker may say one word when she intended to say another, there may be other 

conversations going on in the same room, and the listener may mishear what was said. 

Each of these types of noise serves to corrupt the signal that is transmitted from speaker 

to listener (Shannon, 1948). One might think that such noise would pose major 

impediments to efficient communication. Yet language comprehension typically unfolds 

without noticeable effort. 

Because of this noise, comprehenders maintain uncertainty about the nature of 

preceding words. When reading sentences such as, “The coach smiled at the player tossed 

the ball” readers’ eye movements indicate that they leave open the possibility that “at” 

was actually “and.” Replacing “at” with “and” allows the interpretation of “tossed” as a 

finite verb rather than a past participle; the former interpretation has a much higher 

conditional probability (Levy et al., 2009). Thus, readers have probabilistic 

representations of language input—in particular, syntactic constructions—and use prior 

knowledge to infer the intended meaning. 

Recent theories have proposed that the language processing system maintains 

uncertainty about the input because it is designed to optimally decode the intended 

meaning from a signal transmitted over a noisy channel (Bergen, Levy, & Gibson, 2012; 

Gibson et al., 2013; Jaeger, 2010; Levy, 2008; Levy et al., 2009). In particular, Gibson et 

al. (2013) lay out a framework for sentence comprehension that entails the rational 

(Bayesian) integration of noisy evidence and semantic priors. On their account, the 

producer chooses an intended sentence si in order to communicate her intended meaning, 

mi. si is conveyed across a noisy channel and is corrupted by noise originating from the 
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producer, comprehender, or environment. The comprehender perceives sentence sp and 

tries to infer si. Communication succeeds when the intended sentence si can be recovered 

from sp. This process can be formalized by considering an ideal observer (Geisler & 

Diehl, 2003) model of language comprehension, where the comprehender engages in 

optimal Bayesian decoding of the intended meaning: 

P(si | sp)  P(si)P(si → sp)  (1) 

In Equation (1), P(si | sp) represents the probability assigned by the comprehender to any 

hypothesized si, given the observed linguistic input sp. By Bayes rule, this probability can 

be rewritten as the prior probability P(si) that a producer would wish to communicate si, 

multiplied by the probability of si being corrupted to sp during communication, P(si → 

sp). The prior, P(si), represents the comprehender’s relevant linguistic and world 

knowledge, and biases comprehenders towards a priori plausible utterances. The noise 

model P(si → sp) encodes the comprehender’s knowledge of how sentences can be 

corrupted—for instance, smaller changes to a sentence are more likely than larger ones. 

By integrating P(si) and P(si → sp), comprehenders may arrive at interpretations which 

differ from the literal meanings of the acoustic or visual stream. That is, if comprehenders 

perceive an implausible sentence sp (e.g., The oven cleaned the grandmother) which is 

“close” to a more plausible sentence (e.g., The grandmother cleaned the oven), they 

should infer that the producer actually uttered (or intended to utter) the plausible version.  

Gibson et al. (2013) provide evidence for several predictions of the noisy-channel 

framework in a series of experiments where participants read implausible sentences (e.g., 

The oven cleaned the grandmother) followed by comprehension questions (e.g., Was the 

grandmother cleaned by someone/something?), which probed whether participants 
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interpreted the sentence literally (answer: Yes) or inferred that the intended sentence had 

been corrupted (answer: No). They found that comprehenders were a) more willing to 

forego the literal interpretation when the semantically plausible interpretation involved 

positing fewer changes, b) more likely to infer nonliteral meanings when the change 

involved a deletion compared to an insertion, consistent with the Bayesian size principle 

(Xu & Tenenbaum, 2007), c) more likely to endorse literal interpretations when the fillers 

contained errors, indicating that they had inferred a higher noise rate; and d) less likely to 

endorse literal interpretations when the base rate of implausible sentences was increased, 

suggesting that they had adjusted their semantic prior. Further, Poppels and Levy (2016) 

replicated these results and demonstrated that, in addition to deletions and insertions, 

word exchanges represent a likely form of corruption (e.g., The package fell from the 

floor to the table.). 

Noise Variation 

  Gibson et al. (2013) demonstrated that participants adapt their noise model when 

provided with evidence of a high base-rate of syntactic errors.  Further, listeners infer a 

higher noise rate when listening to foreign-accented speech (Gibson et al., 2017). Yet, 

how the noise likelihood term (si → sp) responds to input characteristics beyond error rate 

has yet to be explored. Critically, we can ask: is the noise model sensitive to the nature of 

errors or simply to the rate of errors?  

In real-world language use, many properties of the noise, beyond the rate, vary 

with context. For example, second language (L2) learners may make certain errors in 

English that a native speaker is unlikely to make and that are influenced by their native 

language (see MacWhinney, 1992). Native speakers of Russian tend to omit articles when 
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speaking L2 English (e.g., Ionin, Ko, & Wexler, 2004), while native speakers of French 

may exchange the orders of adjectives and nouns in L2 English (Nicoladis, 2006). If the 

comprehender’s noise model is sensitive to the nature of errors, it will have different 

properties when listening to an L2 English speaker from Russia than to an L2 English 

speaker from France. However, if the noise model is sensitive to an overall rate of errors, 

it will be similar for the two speakers. 

Recent findings suggest that comprehenders rapidly learn and adapt to the 

linguistic patterns (e.g., frequencies of syntactic constructions, phonetic category 

boundaries) present in their environment in order to achieve more efficient language 

processing (Fine, Jaeger, Farmer, & Qian, 2013; Kleinschmidt & Jaeger, 2015; Ryskin, 

Qi, Duff, & Brown-Schmidt, 2017; though see Harrington Stack, James, & Watson, 2018 

for an example of limits on this ability). Similarly, comprehenders may track the types of 

errors they perceive in a given environment and rapidly adapt the likelihoods of 

components of the noise model. For example, after hearing a speaker repeatedly drop 

articles (e.g., “We had nice time at beach.”), the listener’s noise model may put high 

probability on certain words being deleted, but the probability of insertions may not 

change. Thus, the noise model for the article-dropping speaker would have a larger ratio 

of deletions to other errors, as compared to the noise model for a generic, native English 

speaker. Forming these fine-grained, context-specific representations of the noise would 

likely allow comprehenders to make more accurate inferences about the intended 

meaning si. We call such a noise model a context-specific noise model. 

On the other hand, hearing a speaker repeatedly drop articles may lead the 

listener’s noise model to put higher probability on all possible errors, perhaps on the 
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reasonable assumption that a speaker who makes one type of error is likely to also make 

other errors in the future. Under such a context-invariant noise account, the 

comprehender’s noise model always possesses the same general properties (e.g., more 

edits are less likely than fewer edits, insertions are less likely than deletions) and varies 

only in the base-rate of corruptions. In an environment with a high base-rate of errors, 

comprehenders simply increase the likelihoods of all errors by a constant. In every other 

respect, the probabilities of different occurrences (e.g., deletions vs. insertions) maintain 

the same ratio across contexts. Inferring the noise model would then simply reflect the 

process of adjusting all the likelihoods in the noise model up or down, depending on 

recent evidence. 

Whether comprehenders have context-invariant or context-specific noise models 

gets at the more general question of how people trade off complexity of models and 

accuracy in prediction. If the context-invariant model is correct, then this suggests that 

comprehenders weight model simplicity as more important than accuracy in prediction: 

the context-invariant noise model only has one parameter, the noise rate, and thus it 

should be easier to learn and deploy than a more complex model. If the context-specific 

model is true, then comprehenders weight accuracy as more important than model 

complexity in this case: the context-specific model achieves higher accuracy at the cost 

of greater complexity. The optimal tradeoff of accuracy and complexity will depend on 

the true rate of context-specificity in the world and on the exact nature of the complexity 

cost for noise models. These complexity-accuracy tradeoffs are at the heart of all theories 

of statistical learning (Solomonoff, 1964; MacKay, 2003). Investigating these two 

particular hypotheses in the context of noisy-channel language understanding allows us to 
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develop models of how complexity and accuracy trade off in language processing. 

In the present experiments, we test these hypotheses by probing readers’ 

inferences about intended meanings of sentences and manipulating the experimental 

context to include sentences with specific types of errors (e.g., deletions, insertions, or 

exchanges). If comprehenders track the base-rate of errors but don’t model the nature of 

the errors (context-invariant), they should make more inferences when they’re exposed to 

errors than when the context contains only error-free sentences (Gibson et al., 2013), but 

the pattern of inferences should not differ by type of error exposure. However, if readers 

track more fine-grained error information beyond the base-rate (context-specific), their 

inferences should be sensitive to the type of error they experienced. 

The goals of Experiment 1 were to a) replicate the effect of increasing the noise 

rate observed in Gibson et al. (2013) using a more direct measure (retyping and editing 

rather than comprehension questions), and b) test whether readers are sensitive to the 

nature of noise in the exposure. The goal of Experiment 2 was to run a pre-registered 

replication of Experiment 1 using a large sample size determined by a simulation-based 

power analysis of Experiment 1. 

 

Methods 

Participants 

In Experiment 1, participants were 293 Amazon Mechanical Turk workers with IP 

addresses in the US who self-reported being native English speakers. They were paid 

$3.00 for their participation. In Experiment 2, participants were 880 workers with IP 

addresses in the US who self-reported being native English speakers. They were paid 
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$2.50 for their participation. 

Materials & Design 

Participants were told that they would be reading 95 sentences that were 

transcriptions of someone’s speech and that these transcriptions might contain errors. 

Participants were asked to retype each sentence in a text box and edit it if they thought 

the speaker had intended something different. They saw all the sentences at once and 

were able to return to any sentence and change their answer at any time before submitting 

their work. The instructions for Experiment 2 additionally stated that participants were 

allowed to copy and paste sentences if they did not think they contained any errors. The 

latter two measures were intended to minimize any errors that participants could 

introduce themselves while typing (though such errors would not be expected to affect 

the results of the experimental manipulation because they should occur randomly and 

uniformly across conditions). 

The 95 sentences consisted of 15 test sentences, 20 exposure sentences, and 60 

filler sentences. All experimental materials are available at osf.io/rkrha. The pre-

registration for Experiment 2 is available at osf.io/83nsn. The test sentences were taken 

from Gibson et al. (2013). A norming study1 was used to select 10 sentences that were 

likely to be interpreted as resulting from a deletion (e.g., The uncle sold the truck the 

father.), 10 as an insertion (The earthquake shattered from the house.), and 10 as an 

exchange (e.g., The oven cleaned the grandmother.). These 30 test sentences were then 

                                                 
1 The norming study tested 144 potential test sentences, 160 potential exposure sentences (40 groups of 4 

sentences where one contains no error and the other 3 are minimal variants that contain either a deletion, an 

insertion, or an exchange error), and 80 filler sentences. These sentences, which were split into 2 lists, were 

retyped and edited by 97 Mechanical Turk workers.  The responses were coded in terms of what kind of 

error was perceived. Sentences with low inter-responder agreement about the type of error were not 

included in the experiment. 
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split into 2 lists of 15, five of each type, to make the task shorter for participants and 

increase the ratio of exposure sentences to test sentences. Data from the 2 lists were 

analyzed together. The 20 exposure sentences differed by condition in terms of what type 

of error they contained (see Table 1). The 60 filler sentences were mostly taken from 

Gibson et al. (2013) and did not contain any errors (e.g., The journalist was ignored by 

the politician at the press conference.). Four test sentences were changed between 

Experiment 1 and Experiment 2; because of the high rate of Inferred Exchanges, 

sentences that could only plausibly be interpreted as the result of exchanges (e.g., The 

essay wrote the student.) were switched for sentences from Gibson et al. (2013) that were 

rated most likely to be the result of exchanges but could also be interpreted as resulting 

from deletion (e.g., The bat swung the player). 

Participants were randomly assigned to one of 10 lists (2 lists of test items x 5 

exposure conditions). The order of the 95 items was pseudo-randomized for each 

participant with the constraints that the first 3 items were fillers and 2 test items did not 

directly follow each other. 

 Condition  Example 

Deletion  A bystander was rescued by the fireman in the nick time 

Insertion A bystander was rescued by the fireman to in the nick of time. 

Exchange A bystander was rescued by the fireman in the time of nick. 

Mixed 1/3 Deletion, 1/3 Insertion, 1/3 Exchange 

No Error A bystander was rescued by the fireman in the nick of time. 

Table 1. Example exposure items by condition 

Coding 

Participants’ responses (typed sentences) were compared to the sentences they 
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read (e.g., The oven cleaned the grandmother.) and coded2 as an Inferred Deletion if their 

response was mostly the same as the prompt but contained one or more extra words (e.g., 

The oven was cleaned by the grandmother), as an Inferred Insertion if the response 

contained fewer words than the prompt (e.g., The cleaned grandmother.), an Inferred 

Exchange if the response contained the same words but their order was changed (e.g., 

The grandmother cleaned the oven.), as Inferred No Error if the sentence was identical to 

the prompt and as Inferred Other when the sentence was edited but not in a way that fit 

into any of the preceding categories (e.g., The soap cleaned the grandmother.). If the 

participant’s response formed an ungrammatical sentence (e.g., “The actor handed the 

director script”) it was coded as Inferred Other. If there was an obvious typographical 

error (e.g., “the the actor…”) this was ignored. If responses contained two changes, for 

example both a change in the order of words and the insertion of a word (e.g., "The oven 

cleaned the grandmother" becoming "The grandmother was cleaned by the oven") the 

response was coded as Inferred Other. 

Predictions 

The context-specific noise hypothesis predicts that inferred errors should increase 

                                                 
2 Coding was performed in two steps, both of which were blind to condition: 1) Using the “stringi” package 

in R, each response sentence was compared (character by character) to the corresponding stimulus 

sentence. Those responses that were identical to the stimulus were automatically coded as “Inferred No 

Error.” For the responses that returned a non-zero difference value, the lengths of the two sentences were 

compared. If the lengths of stimulus and response sentences were the same, the response was coded as 

“Inferred Exchange.” If the length of the response was longer than the stimulus sentence, this was coded as 

“Inferred Deletion.” If the length of the response sentences was shorter than the stimulus sentence, the 

response was coded as “Inferred Insertion.” 2) All codings were then checked manually by the first author 

(with condition information hidden during this process) and the fifth category “Inferred Other” was added 

for cases that were not adequately covered by step 1. This checking procedure changed 6.0% and 6.8% of 

the coding in Experiment 1 and 2 respectively. The majority of these changes were due to capitalization 

and punctuation discrepancies. For example, a stimulus and response sentence that differed by the absence 

of a terminal period in the response would be marked as “Inferred Deletion” in step 1. This would have 

been corrected to “Inferred No Error” in step 2. The results of both coding steps can be found in the 

datasets made available on OSF (correction.type and correction.type2 for the coding resulting from step 1 

and 2 respectively; see Supplementary Materials). 
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in the presence of any type of additional noise relative to a baseline of no (additional) 

noise. Thus, Inferred No Error responses should be more likely in the No Error Exposure 

condition than the Mixed condition (and other error Exposure conditions). Further, the 

context-specific hypothesis predicts that the increase in inferred errors should be sensitive 

to the nature of the additional noise, so the rates of Inferred Deletions, Inferred Insertions, 

and Inferred Exchanges should differ by Exposure condition. More specifically, Inferred 

Deletions should be significantly more likely in the Deletion Exposure condition than the 

Mixed condition, Inferred Insertions should be significantly more likely in the Insertion 

Exposure condition than the Mixed condition, and Inferred Exchanges should be 

significantly more likely in the Exchange Exposure condition than the Mixed condition. 

The context-invariant noise hypothesis also predicts that inferred errors should 

increase in the presence of noise. Thus, Inferred No Error responses should be more 

likely in the No Error Exposure condition than any of the four Exposure conditions that 

introduced additional noise (Mixed, Deletion, Insertion and Exchange). However, the 

increase in inferred errors should not be sensitive to the nature of the additional noise, so 

the rates of Inferred Deletions, Inferred Insertions, and Inferred Exchanges should not 

differ by Exposure condition.  

Results 

  Figure 1 shows the average proportion of each type of response (Inferred 

Deletions, Inferred Insertions, Inferred Exchanges, and Inferred No Errors) by Exposure 

Condition, in both Experiment 1 and 2 (the replication). Across Exposure conditions, 

participants were not equally likely to infer Exchanges, Insertions, Deletions, Other 

Errors, or No Error (2(4)=49894.4, p< .001). Participants inferred Exchanges (E1: 53%, 
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E2: 54% of responses) more than Deletions (E1: 27%, 2(1)=627.5, pHolm-adjusted < .001; 

E2: 27%, 2(1)=2024.9, pHolm-adjusted < .001) and Insertions (E1: 13%; E2: 12%) less than 

Deletions (E1: 2(1)=288.2, pHolm-adjusted < .001; E2: 2(1)=1001.6, pHolm-adjusted < .001).  

The effects of Exposure conditions on responses were analyzed using four logistic 

mixed-effects models3 with random intercepts for participants and items nested within 

type of item (test sentences belonged to one of three types that are differentially likely to 

elicit deletions, insertions, or exchanges based on the norming). Random by-items slopes 

were included for Exposure condition. The Mixed Errors Exposure condition was used as 

the reference level in all models. Estimated parameters for all fixed effects are reported in 

Table 2 and the full set of model parameters is reported in Appendix A. Inferred 

Deletions were more likely in the Deletion Exposure condition than the Mixed condition 

(only numerically4 in E1: b= 0.68, p= 0.40; E2: b = 1.34; p < .001) and significantly less 

likely in the Exchange Exposure condition in Experiment 1 (b=-1.34; p= 0.03). In 

Experiment 2, Inferred Deletions were also more likely in the Insertion Exposure 

condition (b = 1.29; p = 0.04) than the Mixed condition. Inferred Insertions were only 

numerically more likely in the Insertion Exposure condition than the Mixed condition in 

both experiments5. Inferred Exchanges were significantly more likely in the Exchange 

Exposure condition than the Mixed condition (E1: b = 1.25, p = .003; E2: b = 0.85; p = 

.001) and significantly less likely in the Deletion Exposure (E1: b = -0.88, p = 0.02; E2: b 

                                                 
3 Given the multinomial nature of the responses we also fit a Bayesian multinomial mixed-effects model. 

However, this analysis was post-hoc and thus we report the pre-registered logistic regressions in the main 

text and report the multinomial analysis in Appendix B. The results from both analyses are consistent. 
4 Likely due to insufficient power in the first experiment.  
5 The fact that the Exposure effect does not reach significance in the case of Inferred Insertions may be a 

consequence of how unlikely comprehenders perceive insertion errors to be from the outset or, relatedly, an 

artifact of attempting to fit a logistic model to a dataset with a large number of zeros (where the log-odds 

approach negative infinity).  
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= -0.65; p = 0.04).  Inferred Exchanges were also significantly less likely in the Insertion 

Exposure condition than the Mixed condition in Experiment 2 (b = -0.76; p = 0.003). 

Finally, Inferred No Errors responses were significantly more likely in the No Errors 

Exposure condition than the Mixed condition (E1: b = 1.16; p = 0.04; E2: b = 0.67; p = 

0.01).  

Experiment 1 Experiment 2 

 b SE z p b SE z P 

Inferred Deletions         

Mixed (Intercept) -

3.397 2.331 

-

1.457 0.145 

-

4.544 2.859 

-

1.589 0.112 

Deletion 0.683 0.808 0.845 0.398 1.34 0.381 3.516 0.000* 

Insertion 0.647 0.507 1.275 0.202 1.285 0.621 2.07 0.038* 

No Error -

0.824 0.766 

-

1.076 0.282 0.162 0.51 0.318 0.751 

Exchange -

1.336 0.61 

-

2.191 0.028* 

-

0.662 0.429 

-

1.543 0.123 

Inferred Insertions         

Mixed (Intercept) 

-

7.984 4.803 

-

1.662 0.096 

-

6.976 2.475 

-

2.819 0.005 

Deletion -1.22 7.234 

-

0.169 0.866 

-

3.397 3.129 

-

1.086 0.278 

Insertion 3.095 3.949 0.784 0.433 

-

2.889 2.823 

-

1.023 0.306 
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No Error 2.475 4.058 0.61 0.542 

-

3.425 3.063 

-

1.118 0.263 

Exchange 2.495 4.102 0.608 0.543 

-

4.422 3.623 -1.22 0.222 

Inferred No Errors         

Mixed (Intercept) 

-

4.855 0.739 

-

6.569 0.000 

-

4.419 0.735 

-

6.015 0.000 

Deletion 

-

0.408 0.823 

-

0.496 0.620 

-

0.088 0.334 

-

0.262 0.793 

Insertion 

-

0.397 0.683 

-

0.581 0.562 0.109 0.287 0.378 0.705 

No Error 1.161 0.576 2.014 0.044* 0.672 0.271 2.482 0.013* 

Exchange 

-

1.342 2.085 

-

0.644 0.520 0.03 0.347 0.088 0.930 

Inferred 

Exchanges 

        

Mixed (Intercept) 0.523 1.807 0.29 0.772 0.472 1.538 0.307 0.759 

Deletion 

-

0.882 0.383 

-

2.303 0.021* 

-

0.647 0.312 

-

2.074 0.038* 

Insertion 

-

0.632 0.391 

-

1.618 0.106 

-

0.757 0.25 

-

3.024 0.002* 

No Error 0.002 0.408 0.005 0.996 

-

0.039 0.212 

-

0.185 0.853 
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Exchange 1.251 0.428 2.926 0.003* 0.852 0.261 3.261 0.001* 

Table 2: Fixed Effects from Logistic Mixed-Effects Regression Analyses (Experiment 1 

and 2; see Appendix A for full models with random effects structure). Asterisk denotes 

significant differences at = 0.05. 

 

Figure 1. Proportions of edits by type of inference and Exposure Condition in 

Experiments 1 and 2. Vertical densities indicate distribution of individual responses 

included in each average. Error bars represent bootstrapped 95% confidence intervals. 

(See Appendix C for proportions of each response by test item.) 

 

 

Inferred Deletion Inferred Insertion Inferred Exchange Inferred No Error

E
x
p
e
rim

e
n
t 1

E
x
p
e

rim
e
n

t 2

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

P
ro

p
o
rt

io
n
s
 o

f 
R

e
s
p
o
n

s
e
 T

y
p
e

Exposure Condition
Mixed Errors  Deletions  Insertions  Exchanges  No Errors



 17 

General Discussion 

In two experiments, readers corrected sentences based on what they thought the 

speaker had originally intended. We observed that participants have a noise model in 

which Insertions were less likely than Deletions overall and Exchanges were the most 

likely type of error. These patterns are consistent with previous observations (Gibson et 

al., 2013; Poppels & Levy, 2016), though in the present paradigm idiosyncrasies of the 

stimulus set may contribute to these different baselines. Edits were overall more likely 

when participants were exposed to sentences with a mixture of errors than when there 

were no errors in the input, consistent with Gibson et al. (2013). Furthermore, the 

inferences readers made— about the nature of noise corruption that was applied to 

sentences—were influenced by the nature of errors most common in their input. In 

particular, participants inferred that an Exchange had occurred most often when the 

experimental context contained many sentences with Exchange errors and they inferred 

that a Deletion had occurred most often when the context contained many sentences with 

Deletion errors. Similarly, they were most likely to infer no corruption in the case where 

there were no errors in the experimental context. 

 In addition, Inferred Deletions were more likely in both the Deletion and 

Insertion Exposure conditions whereas Inferred Exchanges were less likely in both 

Deletion and Insertion Exposure conditions compared to Mixed Exposure, which 

suggests a categorical distinction in the noise model that groups insertions and deletions 

together as analogous types of errors and exchanges as a different category of error. This 

somewhat unexpected result suggests that comprehenders’ model of the noise assumes 

multiple potential generators of errors in written language: one that produces deletions 
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and insertions and one that produces exchanges. One possibility is that deletions and 

insertions are the kinds of errors that one might expect to occur when the producer is 

typing fast and omitting words or forgetting to delete words that no longer fit in the 

sentence. On the other hand, exchanges may reflect a higher-order language planning 

error that can occur independently of the producer’s typing speed or competence. Recall 

that, in these experiments, participants were told that they were reading transcriptions of 

a speaker’s productions, thus both error generators could have played a role in corrupting 

the sentences they perceived. One very speculative interpretation could be that 

participants who observed many deletions in the exposure may have inferred that the 

speech was pristine but the transcriber who was typing was error-prone, thus making 

insertions seem more plausible as well (and vice versa for those in the Insertions 

Exposure condition). On the other hand, participants in the Exchange exposure may have 

inferred that the transcriptions were careful but the speaker was inattentive. Further work 

is needed to determine whether these groupings of errors hold across experiments and 

whether they reflect comprehenders’ hypotheses about likely mechanisms underlying the 

errors they observe in the input.  

One important difference between the current approach and prior investigations of 

noisy-channel sentence comprehension, is the use of a more explicit measure of noise 

inference: re-typing and correcting errors. Previous tasks have relied on implicit measures 

of noisy-channel processing, such as comprehension questions (Gibson et al., 2013) or 

regressive eye-movements (Levy et al., 2009). Those methods have the benefit of being 

(perhaps) more typical of everyday comprehension activities, though explicit correction 

is a common activity for anyone who edits papers, for example. In addition, those tasks 
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reveal that noisy-channel correction can be covert and readers often are not aware that 

they have interpreted the sentence in a way that is different than the literal string. 

However, these implicit measures allow for only a very indirect assessment of the noise 

model that readers are deploying: a given perceived sentence could have originated from 

a variety of intended sentences via different noise corruption processes. Understanding, at 

a more fine-grained level, which noise corruptions comprehenders find more or less 

probable is a critical step in developing computational models of noisy-channel sentence 

comprehension and a goal of the current work. It seems parsimonious to assume that the 

same noise model is at play during implicit and explicit corrections. Thus, we probe the 

noise model directly by asking readers to reverse whichever corruption they find most 

plausible given a sentence.  

Conclusion 

In this work, we provide robust evidence that language comprehenders model the 

noise that is present in their environment and make rational inferences in accordance with 

that model. Moreover, our results support the context-specific noise hypothesis: the 

model of the noise is not only sensitive to the base rate of noise, but also to more fine-

grained information about the nature of errors that are present. This novel finding extends 

prior work showing that comprehension involves rational inference accounting for 

potential noise in the transmission of a linguistic message by integrating information 

about the prior probability of a perceived message with the likelihood of a particular 

corruption (Levy et al., 2009; Gibson et al., 2013). It also informs models of language 

processing that account for noise in the input by suggesting that there is a dynamically 

adaptive component to the noise model.  
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More broadly, these results are consistent with recent findings that language users 

are sensitive to the statistics of the input and form expectations about upcoming linguistic 

material at many levels of representation—acoustic features, syntactic constructions, 

referential form, pragmatic cues inter alia—that are tailored to the distributional 

information in the input (Brown-Schmidt, 2009; Brown-Schmidt, Yoon & Ryskin, 2015; 

Fine et al., 2013; Kleinschmidt & Jaeger, 2015; Kurumada, Brown, & Tanenhaus, 2017; 

Ryskin et al., 2017). In terms of everyday language use, the results reported here suggest 

that, when meeting an L2 speaker of English with an idiosyncratic pattern of errors (e.g., 

omitting articles or inverting word order), listeners do not simply assume that the speaker 

is more likely to make errors across the board. Rather, listeners learn what kinds of errors 

the speaker is prone to and fine-tune their inferences about the intended meaning of the 

speaker’s utterances to account for those specific errors.   
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Appendix A 

Experiment 1  Experiment 2 

Inferred Deletions         

Fixed Effects β SE z-

value 

p-

value 

β SE z-value p-value 

Mixed (Intercept) -3.397 2.331 -1.457 0.145 -4.544 2.859 -1.589 0.112 

Deletion 0.683 0.808 0.845 0.398 1.34 0.381 3.516 0 

Insertion 0.647 0.507 1.275 0.202 1.285 0.621 2.07 0.038 

No Error -0.824 0.766 -1.076 0.282 0.162 0.51 0.318 0.751 

Exchange -1.336 0.61 -2.191 0.028 -0.662 0.429 -1.543 0.123 

Random Effects SD    SD    

(Intercept) 

Sentence : Type 0.999 

   

0.679 

   

Deletion 0.131    0.159    

Insertion 0.047    0.106    

No Error 0.131    0.227    

Exchange 0.183    0.036    

(Intercept) Type 3.996    5.171    

Deletion 1.095    0.397    

Insertion 0.283    0.977    

No Error 0.825    0.695    

Exchange 0.257    0.367    

(Intercept) 

Participant 1.735 

   

1.735 

   

Inferred Insertions         

Fixed Effects β SE z-

value 

p-

value 

β SE z-value p-value 

Mixed (Intercept) -7.984 4.803 -1.662 0.096 -6.976 2.475 -2.819 0.005 

Deletion -1.22 7.234 -0.169 0.866 -3.397 3.129 -1.086 0.278 

Insertion 3.095 3.949 0.784 0.433 -2.889 2.823 -1.023 0.306 

No Error 2.475 4.058 0.61 0.542 -3.425 3.063 -1.118 0.263 

Exchange 2.495 4.102 0.608 0.543 -4.422 3.623 -1.22 0.222 

Random Effects SD    SD    

(Intercept) 

Sentence : Type 0.711 

   

0.529 

   

Deletion 0.504    0.308    

Insertion 0.487    0.203    

No Error 0.618    0.169    

Exchange 0.615    0.238    

(Intercept) Type 5.229    4.52    

Deletion 1.144    2.604    

Insertion 1.539    2.898    

No Error 2.286    2.349    

Exchange 2.559    2.471    

(Intercept) 

Participant 1.352 

   

1.459 

   

Inferred No Error         

Fixed Effects β SE z-

value 

p-

value 

β SE z-value p-value 

Mixed (Intercept) -4.855 0.739 -6.569 0 -4.419 0.735 -6.015 0 

Deletion -0.408 0.823 -0.496 0.62 -0.088 0.334 -0.262 0.793 

Insertion -0.397 0.683 -0.581 0.562 0.109 0.287 0.378 0.705 
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No Error 1.161 0.576 2.014 0.044 0.672 0.271 2.482 0.013 

Exchange -1.342 2.085 -0.644 0.52 0.03 0.347 0.088 0.93 

Random Effects SD    SD    

(Intercept) 

Sentence : Type 0.74 

   

0.576 

   

Deletion 1.229    0.215    

Insertion 0.389    0.017    

No Error 0.562    0.147    

Exchange 0.911    0.249    

(Intercept) Type 1.015    1.212    

Deletion 0.875    0.333    

Insertion 0.509    0.155    

No Error 0.419    0.155    

Exchange 2.679    0.36    

(Intercept) 

Participant 1.6 

   

1.389 

   

Inferred Exchange         

Fixed Effects β SE z-

value 

p-

value 

β SE z-value p-value 

Mixed (Intercept) 0.523 1.807 0.29 0.772 0.472 1.538 0.307 0.759 

Deletion -0.882 0.383 -2.303 0.021 -0.647 0.312 -2.074 0.038 

Insertion -0.632 0.391 -1.618 0.106 -0.757 0.25 -3.024 0.002 

No Error 0.002 0.408 0.005 0.996 -0.039 0.212 -0.185 0.853 

Exchange 1.251 0.428 2.926 0.003 0.852 0.261 3.261 0.001 

Random Effects SD    SD    

(Intercept) 

Sentence : Type 0.791 

   

0.602 

   

Deletion 0.245    0.242    

Insertion 0.281    0.072    

No Error 0.49    0.053    

Exchange 0.405    0.187    

(Intercept) Type 3.099    2.712    

Deletion 0.343    0.424    

Insertion 0.354    0.295    

No Error 0.397    0.18    

Exchange 0.374    0.31    

(Intercept) 

Participant 1.466 

   

1.504 

   

Observations: 4395, Participants: 293, Sentences: 30, 

Types: 3 

Observations: 13200, Participants: 880, 

Sentences: 30, Types: 3 

Table A. Full model estimates for logistic mixed–effects regressions predicting types of 

inferences from Exposure conditions in Experiment 1 and 2. 
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Appendix B 

Population-Level 

Effects 

 Estimate 

(mu) 

Error 95% CI - lower 95% CI - upper % of posterior 

samples > 0 

Inferred Deletion Intercept -0.37 1.08 -2.67 1.59 37.59 

 Deletion Exposure 0.69 0.31 0.09 1.29 98.69 

 Insertion Exposure 0.34 0.31 -0.26 0.96 86.18 

 Exchange Exposure -0.86 0.31 -1.47 -0.25 0.31 

 No Error Exposure -0.66 0.3 -1.23 -0.06 1.41 

Inferred Insertion Intercept -5.09 2.09 -9.95 -1.73 0.08 

 Deletion Exposure -0.19 0.29 -0.75 0.39 25.88 

 Insertion Exposure 0.82 0.3 0.23 1.43 99.61 

 Exchange Exposure -0.86 0.3 -1.45 -0.29 0.11 

 No Error Exposure -0.58 0.27 -1.12 -0.05 1.55 

Inferred Exchange Intercept 3.58 0.34 2.92 4.25 1 

 Deletion Exposure -0.34 0.27 -0.86 0.19 10.24 

 Insertion Exposure -0.33 0.28 -0.88 0.22 11.7 

 Exchange Exposure 0.4 0.27 -0.13 0.94 92.89 

 No Error Exposure -0.37 0.26 -0.88 0.14 7.63 

Inferred No Error Intercept -0.06 0.4 -0.87 0.71 44.46 

 Deletion Exposure -0.18 0.34 -0.83 0.48 29.75 

 Insertion Exposure 0.26 0.35 -0.42 0.92 77.79 

 Exchange Exposure -0.18 0.33 -0.86 0.47 29.7 

 No Error Exposure 0.19 0.32 -0.44 0.82 72.53 

       

Group-Level Effects  Estimate 

(sd) 

Est.Error 95% CI - lower 95% CI - upper 

Items (30 levels)       

Inferred Deletion Intercept 5.36 1.02 3.75 7.77  

Inferred Deletion Deletion Exposure 0.22 0.15 0.01 0.58  

Inferred Deletion Insertion Exposure 0.21 0.16 0.01 0.6  

Inferred Deletion Exchange Exposure 0.21 0.17 0.01 0.62  

Inferred Deletion No Error Exposure 0.25 0.17 0.01 0.63  
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Inferred Insertion Intercept 7.33 2.02 4.35 12.38  

Inferred Insertion Deletion Exposure 0.25 0.18 0.01 0.65  

Inferred Insertion Insertion Exposure 0.29 0.19 0.02 0.73  

Inferred Insertion Exchange Exposure 0.18 0.15 0.01 0.55  

Inferred Insertion No Error Exposure 0.14 0.12 0.01 0.44  

Inferred Exchange Intercept 1.54 0.25 1.14 2.1  

Inferred Exchange Deletion Exposure 0.15 0.11 0.01 0.41  

Inferred Exchange Insertion Exposure 0.13 0.1 0 0.38  

Inferred Exchange Exchange Exposure 0.12 0.09 0 0.34  

Inferred Exchange No Error Exposure 0.12 0.09 0.01 0.34  

Inferred No Error Intercept 1.77 0.28 1.3 2.4  

Inferred No Error Deletion Exposure 0.2 0.16 0.01 0.59  

Inferred No Error Insertion Exposure 0.27 0.2 0.01 0.73  

Inferred No Error Exchange Exposure 0.2 0.15 0.01 0.57  

Inferred No Error No Error Exposure 0.15 0.11 0.01 0.43  

Participants  

(880 levels) 

      

Inferred Deletion Intercept 1.49 0.08 1.33 1.66  

Inferred Insertion Intercept 1.25 0.09 1.07 1.43  

Inferred Exchange Intercept 1.45 0.06 1.32 1.57  

Inferred No Error Intercept 1.54 0.11 1.34 1.76  

Table B. Summary of parameter estimates from a multi-level multinomial model of how 

participants edited test sentences (whether they Inferred a Deletion, an Insertion, an 

Exchange, No Error, or Other, which was set to 0), based on what Exposure condition 

they were in (Mixed—the reference level, Deletions, Insertions, Exchanges, or No 

Errors). Participants were included as random intercepts. Items were included as random 

intercepts with random slopes for Exposure condition (correlation between slopes and 

intercepts was not estimated). The model was fit using the “brms” package for Bayesian 

Multilevel Modeling in R (Bürkner, 2017) with weakly regularizing priors for all 

population-level effects (normal distribution with a mean of 0 and standard deviation of 
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10). Bold rows indicate parameters for which there is evidence for an effect of Exposure 

condition on a particular response category probability, relative to the Mixed Exposure 

condition (either because the 95% Credible Interval, CI, doesn’t contain 0 or over 90% of 

the posterior distribution exceeds 0). Broadly, these results are in line with the logistic 

regression analyses and the data patterns observed in Figure 1: Inferred Deletions were 

most likely when participants were in the Deletion Exposure condition, Inferred 

Insertions were most likely in the Insertions Exposure condition and Inferred Exchanges 

were most likely in the Exchange Exposure condition (though the 95% CI does overlap 

with 0). Unlike in the previous analysis, there is not strong evidence for a higher 

probability of Inferred No Error responses in the No Error Exposure condition compared 

to the Mixed Exposure condition. This may be partially due to the overall very low 

number of Inferred No Error responses across items (see Appendix C). 
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Appendix C 

 

Figure C. Proportion of responses by type for each test item. (Each participant saw 15 

items). 
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Supplementary Material 

Raw data, materials, analysis code, and pre-registration available at https://osf.io/rkrha/ 
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