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Abstract

From my perspective, Pater’s (2018) target article does a great service to both researchers
who work in generative linguistics and researchers who utilize neural networks – and especially
to researchers who might find themselves wanting to do both by harnessing the insights of
each tradition. The fusion of theories of linguistic representation and probabilistic learning
techniques has certainly led to many interesting and valuable insights about the nature of both
linguistic representation and the language acquisition process. However, I feel that the most
exciting aspect of Pater’s article is the increasing interpretability of neural network models,
especially when combined with insights from the generative linguistics theoretical framework.
This allows for the possibility that neural networks could be used to actually generate new
theories of representation. I describe how I think this theory generation process might work
with interpretable neural networks.
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Fusion is great for theory.

Pater’s article highlights that learning theories are intimately related to theories of linguistic rep-
resentation. That is, one reason why we theorize that representations take certain forms is because
of how these representations are learned by children (and importantly what the constraints are on
that learning process). This learnability-centric approach complements an approach based on ty-
pological economy, whose goal is to identify a representation that accounts for all and only the
variation observed in human languages. In my view, the typological economy approach is a fine
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way to generate theories of possible representations, and the learnability approach is a fine way to
evaluate theories of possible representations. Pater notes that this is a productive cycle in phonol-
ogy, where Optimality Theory and Harmonic Grammar theories of typology are supported relative
to the success of the learning algorithms associated with them; I’ve also taken this learnability
approach in some of my recent work comparing parametric theories of phonology (Pearl, 2017,
Pearl, Ho and Detrano, 2017). More generally, I think there’s great value in making “arguments
from acquisition” to evaluate proposed theoretical representations, which I’ve done in other recent
work (e.g., Pearl and Sprouse 2013, 2018a,b).

This link between linguistic representation and language acquisition means we need to seri-
ously consider what it is that human learning mechanisms are capable of, given the data children
encounter. Only then can we evaluate possible linguistic representations that encode the linguis-
tic knowledge children attain after learning. This is especially relevant for considerations of “how
much and what kind of explicitly pre-specified linguistic structure is needed,” as Pater notes, which
is the heart of the Universal Grammar (UG) debate. There are two key findings from recent sym-
bolic probabilistic modeling work which speak to exactly this (Perfors, Tenenbaum and Regier,
2011, Pearl and Sprouse, 2013, Pearl and Mis, 2016, Abend, Kwiatkowski, Smith, Goldwater and
Steedman, 2017, Pearl and Sprouse, 2018a): (i) children can get by without the built-in language-
specific knowledge that we previously thought they needed, but (ii) children still need something
built in (which is often an ability to generate structured representations of particular kinds).

The findings I mentioned above are primarily in the realm of syntax, but Pater notes that certain
representational analyses in phonology were previously excluded for learnability reasons. Now
that we have a better understanding of the learning mechanisms children can use, these analyses
are probably worth reconsidering. From the perspective of what’s in UG, probabilistic modeling
allows us to investigate the explicitly pre-specified linguistic structure that’s needed for specific
representations to be learnable by children.

Where I initially diverged from Pater’s view on the value of neural networks was exactly what to
use them for: that is, what added value did they have over other probabilistic learning techniques?
As I noted above, my own work and that of many others in the language acquisition modeling
community relies on probabilistic inference over symbolic representations. This contrasts with the
distributed representations that neural networks typically rely on, which are often far more difficult
to interpret.

Maybe neural networks were meant as an implementational-level model of a representation
and learning process (in the sense of Marr (1982)), mimicking how the wetware of the brain would
implement the symbolic representations and inference of prior models. If so, one clear added value
of implementational-level neural network models is demonstrating how the proposed symbolic
representation and learning process can be carried out in human brains.

Yet, from what I could tell, this didn’t seem to be what the neural networks used in language
modeling were doing. Many of them (especially those used in deep learning approaches) don’t
share a lot of implementational details with the human brain as we now understand brains, in con-
trast with neuromorphic models that encapsulate neurobiology in great detail (e.g., Neftci, Binas,
Rutishauser, Chicca, Indiveri and Douglas 2013, Krichmar, Conradt and Asada 2015, Avery and
Krichmar 2017, Beyeler, Rounds, Carlson, Dutt and Krichmar 2017, Neftci, Augustine, Paul and
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Detorakis 2017). So, the neural networks of language modeling are another instance of a higher-
level probabilistic learning model – and typically an idealized, computational-level model at that,
if the neural networks don’t take the learning period limitations of human language acquisition into
account. This means these neural network models aren’t telling us how human brains implement
linguistic representation and learning; instead, they’re telling us what representations and learning
procedures could give rise to observable linguistic behavior we care about, given certain assump-
tions about probabilistic learning. That is, these neural network models would be used for theory
evaluation, the same as traditional symbolic probabilistic models.

But, this again highlights a key downside to neural networks as we knew them: they’re really
hard to interpret. If I’m a cognitive modeler who wants to evaluate a particular theory that’s
typically stated in symbolic terms, why should I choose a neural network whose innards are hard to
interpret over some other probabilistic learning technique (e.g., Bayesian inference) whose innards
are easy to interpret?

The answer came to me near the end of Pater’s article: I don’t. That is, I don’t want to use
neural networks for explicit theory evaluation – if I already have an explicit theory, I’m better off
with a model that’s easy to interpret. However, what if I don’t already have an explicit theory?
What if instead I have a sense that there are certain necessary building blocks, but I don’t quite
know if the ones I’m thinking of can be stuck together by a plausible probabilistic learner in the
right way to yield human language acquisition behavior?

Interpretable fusion could be exciting for theory generation.

Pater characterizes recurrent neural networks (RNNs) the following way: the RNNs are “given the
building blocks and their roles, but must learn their configurations”. To me, this bears a striking
resemblance to explicit hypothesis construction from a latent hypothesis space defined by certain
building blocks and their roles (Perfors, 2012) — and that’s something that generative linguists
are already familiar with. For instance, linguistic parameters are the building blocks that define
a latent hypothesis space of grammars (e.g., n binary parameters define a latent hypothesis space
of 2n explicit grammars); a probabilistic learning algorithm like variational learning (Yang, 2002,
2004, 2012) is a way to generate explicit grammar hypotheses and evaluate them, given the data
children encounter. Another recent example from my own work is using a cognitively-motivated
decision criterion called the Tolerance Principle (Yang, 2005, 2016) to construct explicit linking
theory hypotheses from a latent hypothesis space defined over links between syntactic positions
and thematic roles (Pearl and Sprouse, 2018b). These learning mechanisms have in common that
they can generate an explicit hypothesis from the pre-defined building blocks in the latent hypoth-
esis space – but the explicit hypothesis itself isn’t explicitly pre-defined.

I think the same intuition holds for overhypotheses in hierarchical Bayesian inference (see
Pearl and Goldwater (2016) and Pearl (in press) for an accessible overview). The overhypothe-
sis defines the building blocks out of which the more specific hypotheses are constructed. As a
quick non-linguistic example of overhypotheses (derived from an experiment with 9-month-olds
by Dewar and Xu (2010)), consider an infant who’s trying to figure out the contents of bags in an
experimental setup. From the first bag, the experimenter pulls out 4 circles of different colors; from
the second bag, the experimenter pulls out 4 squares of different colors; and from the third bag, the
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experimenter pulls out 4 triangles of different colors. Now, from the fourth bag, the experimenter
pulls out a single star. What should the rest of the fourth bag contain? Adults (and 9-month-olds)
expect it to contain 3 more stars of different colors. Why? The infant has never seen stars before
in this experimental setup – why should she have any expectations at all about bags with stars?
The answer is that she’s formed an overhypothesis about the contents of bags, on the basis of the
first three example bags: bags contain 4 objects of the same shape (all of different colors). So,
when she sees a star come out of the fourth bag, she can generate the explicit hypothesis that the
fourth bag contains 4 stars all of different colors. If an experimenter reached into a fifth bag and
pulled out a pentagon, the infant would generate the explicit hypothesis that the fifth bag contains
4 pentagons all of different colors. This is the same generative power we saw before: the ability
to generate an explicit hypothesis to be evaluated, on the basis of available building blocks. In
this case, the building blocks are supplied by the overhypothesis, with “shape”, “4”, and “all of
different colors” as building blocks in that overhypothesis.

In fact, hierarchical Bayesian inference has the ability to have overhypotheses on overhypothe-
ses (called over-over-hypotheses), so that the building blocks of one level may be the explicit
hypotheses from a previous level. In the example above about the contents of bags, the over-over-
hypothesis might contain the building block of “exact number”, which would allow generation
of the overhypothesis of “4” (but also “1” or “2” or “7”); similarly, it might contain the building
block of “color distribution”, which would allow generation of the overhypothesis of “all of differ-
ent colors” (but also “all the same color” or “50-50 color split” or “90-5-5 color split”). In this way,
hierarchical Bayesian inference could allow us to identify very basic building blocks that could be
configured into more and more specific explicit hypotheses.

However, a current limitation is that we, as modelers, have to specify both those core build-
ing blocks and, for every level of overhypothesis we have, how an explicit hypothesis at the next
level is generated. In practical terms, this means we’re constrained by current symbolic mathemat-
ical methods that define how this explicit hypothesis generation process occurs. This also means
that we’re constrained by our own conceptions of what the building blocks could be, and, impor-
tantly, how explicit hypotheses could be generated from those building blocks. Let’s consider the
example about the contents of bags again: what are the sufficient building blocks of the over-over-
over-hypothesis that allow generation of “exact number” and “color distribution”? Will certain
conceptual features do? What about attentional features?

For me, this is where the RNNs come in. Say we have some ideas about potential building
blocks at a very fundamental level (e.g., the equivalent of the over-over-over-hypothesis). However,
we don’t know if these building blocks are capable of generating reasonable over-over-hypotheses,
that in turn generate reasonable overhypotheses, that in turn generate reasonable hypotheses, that
in turn lead to observable linguistic behavior. This could be where an RNN could shine. The
RNN would take in those fundamental building blocks and identify configurations that could lead
to observable behavior without the modeler having to explicitly tell the model how to generate the
intermediate hypothesis levels (though of course the modeler has to specify the RNN architecture).

Why is this any better than using hierarchical Bayesian modeling? I think it’s because an
RNN might generate intermediate hypotheses (e.g., over-over-hypotheses and overhypotheses) that
aren’t something a human modeler would naturally think of, given those original building blocks.
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The RNN generates intermediate hypotheses based on whatever architectural biases mold its ex-
plicit hypothesis generation; so, it may give higher probability to explicit hypotheses that were very
low probability for a hierarchical Bayesian model. Yet, these novel explicit hypotheses might well
be a viable option for generating observable linguistic behavior – they’re just not ones a human
modeler would think of.

I think a helpful analogy comes from the related fields of genetic/evolutionary algorithms and
evolutionary programming (Koza, 1994, 1995, Back, 1996, Li, Li, Tang and Yao, 2015, Khan,
2018); both have been used (among other ways) for optimization problems, such as designing
circuits. These algorithms “evolve” a solution to a problem using biologically-inspired manipu-
lations of the relevant building blocks, and can not only find the best solutions, but can find ones
that humans didn’t think of. That is, because human problem solvers (e.g., circuit designers) are
implicitly fettered by ideas about what the solution will look like, they end up exploring only a part
of the latent hypothesis space. This of course is a part of the hypothesis space that, from their per-
spective, has a high probability of containing the best solution. But, that’s the point: it’s from their
perspective, given whatever biases they have, based on their knowledge of what existing solutions
look like and the principles that allowed them to generate those solutions.

I think the same could be true for theories of linguistic representation. We could be implicitly
fettered by our ideas about what the representation will look like, given certain building blocks,
existing theories, and how we generated previous theories of representation from those building
blocks. So, because of that, we only explore certain parts of the latent hypothesis space of repre-
sentations that seem like high probability regions to us – and we do this by symbolically encoding
how the building blocks from one level generate the explicit hypotheses of the next level. In
contrast, an RNN could be given the same fundamental building blocks and then explore a differ-
ent section of the latent hypothesis space, implicitly fettered by its architecture. Importantly, its
architecturally-based fetters aren’t obviously the same as our (symbolic) idea-based fetters, and so
perhaps an RNN can identify representation possibilities we haven’t conceived of yet that nonethe-
less match observable linguistic behavior.

If that happens, then everything hinges on how interpretable the RNN solutions are. If we can
interpret a novel solution – that is, translate it back into symbolic terms we can understand – we
then have a new proposal for a theory of linguistic representation, based on the building blocks we
gave the RNN. As Pater notes, there are equivalencies between the distributed representations of
existing RNN models and linguistic structures that linguists recognize (e.g., Palangi, Smolensky,
He, Deng and Redmond 2017). This gives me hope that the distributed representation solutions that
future RNNs come up with may lead to possible linguistic representations we haven’t considered
before – and this is exciting indeed.
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