A Variational Model of Language
Acquisition

One hundred years without Darwin are enough. .
H. J. Muller (1959), on the centennial of On the Origin of
Species

It is a simple cbservation that young children’s language is differ-
ent from that of adults. However, this simple observation raises
profound questions: What results in the differences between child
language and adult language, and how does the child eventually
resolve such differences through exposure to linguistic evidence?

These questions are fundamental to language acquisition
research. (6) in Chapter 1, repeated below as (14), provides a
useful framework within to characterize approaches to language
acquisition:

(14) L:(S, E) =Sy

Language acquisition can be viewed as a fanction or algorithm, £,
which maps the initial and hence putatively innate state (S} of
the learner to the terminal state (S,), the adult-form language, on
the basis of experience, E, in the environment.

Two leading approaches to L can be distinguished in this
formulation according to the degree of focus on S, and L. An
empiricist approach minimizes the role of S, the learner’s initial
(innate) and domain-specific knowledge of natural language.
Rather, emphasis is given to £, which is claimed to be a general-
ized learning mechanism cross-cutting cognitive domains. Models
in this approach can broadly be labeled generalized statistical learn-
ing (GSL): learning is the approximation of the terminal state (Sy)
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based on the statistical distribution of the input data. In contrast,
a rationalist approach, often rooted in the tradition of generative
grammar, attributes the success of language acquisition to a richly
endowed § , while relegating L0 a background role. Specifically,
5,18 assumed to be a delimited space, a Universal Gramimar {(UG),
which consists of a finite number of hypotheses that a child can
in principle entertain. Almost all theories of acquisition in the
UG-based approach can called transformational learning models,
borrowing a term from evolutionary biology (Lewontin 1983} the
learner’s linguistic hypothesis undergoes direct transformations
(changes), by moving from one hypothesis to another, driven by
linguistic evidence.

This study introduces a new approach to language acquisition
in which both S, and £ are given prominent roles in explaining
child language. We will show that once the domain-specific and
innate knowledge of language (S,) is assumed, the mechanism
language acquisition (£) can be related harmoniously to the
learning theories from traditional psychology, and possibly, the
development of neural systems. '

2.1 Against transformational learning

Recall from Chapter 1 the three conditions on an adequate acqui-
sition model:

(15) a. formal sufficiency
b. developmental compatibility
c. explanatory continuity

If one accepts these as guidelines for acquisition research, we can
put the empiricist GSL models and the UG-based transforma-
tional learning models to the test.

In recent years, the GSL approach to language acquisition has
(re)gained popularity in cognitive sciences and computational
linguistics (see e.g. Bates & Elman 1996, Seidenberg 1997). The GSL
approach claims to assume little about the learner’s initial knowl-
edge of language. The child learner is viewed as a generalized data
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processor, such as an artificial neural network, which approxi-
mates the adult language based on the statistical distribution of
the input data. The GSL approach claims support (Bates & Elman
1996) from experiments showing that infants are capable of
extracting statistical regularities in (quasi)linguistic information
(e.g. Saffran et al. 1996).

Despite this renewed enthusiasm, it is regrettable that the GSL
approach has not tackled the problem of language acquisition in
a broad empirical context. For example, a main line of work (e.g.
Elman 1990, 1991) is dedicated to showing that certain neural
network models are able to capture some limited aspects of
syntactic structures—a most rudimentary form of the formal
sufficiency condition—although there is still debate on whether
this project has been successful (e.g. Marcus 1998). Much more
effort has gone into the learning of irregular verbs, starting with
Rumelhart & McClelland (1986) and followed by numerous
others,! which prompted a review of the connectionist manifesto,
Rethinking Innateness (Elman et al. 1996), to remark that connec-
tionist modeling makes one feel as if developmental psycholin-
guistics is only about ‘development of the lexicon and past tense
verb morphology’ (Rispoli 1999: 220). But even for such a trivial
problem, no connectionist network has passed the Wug-test
(Prasada & Pinker 1993, Pinker 1999), and, as we ‘shall see in
Chapter 3, much of the complexity in past tense acquisition is not
covered by these works. _

As suggested in section 1.2.2, there is reason to believe that these
challenges are formidable for generalized learning models such as
an artificial neural network. Given the power of computational
tools available today, it would not be remarkable to construct a
(GSL) system that learns something. What would be remarkable is
to discover whether the constructed system learns in much the
same way that human children learn. (10} shows that child
language and adult language display significant disparities in
statistical distributions; what the GSL approach has to do, then, is

' Pinker (1999; 302) lists 25 major connectionist studies on irregular verbs.
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to find an empiricist (learning-theoretic) alternative to the learn-
ing biases introduced by innate UG. This seems difficult, given the
simultaneons constraints—from both child language acquisition
and comparative studies of the world’s languages—that such an
alternative must satisfy. That is, an empiricist must account for,
say, systematic utterances like me riding horse (meaning T am
riding a horse’) in child language and island constraints in adult
language, at the same time. But again, nothing can be said unless
the GSL approach faces the challenges from the quantitative and
crosslinguistic study of child language; as pointed out by
Lightfoot (1998), Fodor & Crowther (in press}), and others, there
is nothing on offer.

We thus focus our attention on the other leading approach to
language acquisition, which is most closely associated with gener-
ative linguistics. We will not review the argument for innate
linguistic knowledge; see section 1.1 for a simple yet convincing
example. The restrictiveness in the child language learner’s
hypothesis space, coupled with the similarities revealed in
comparative studies of the world’s languages, have led linguists to
conclude that human languages are delimited in a finite space of
possibilities, the Universal Grammar. The Principles and
Parameters (P&P) approach (Chomsky 1981} is an influential
instantiation of this idea by attempting to constrain the space of
linguistic variation to a set of parametric choices.

In generative linguistics, the dominant model of language
acquisition (e.g. Chomsky 1965, Wexler & Culicover 1980, Berwick
1985, Hyams 1986, Dresher & Kaye 1990, Gibson & Wexler 1994)
can be called the transformational learning (TL} approach. It
assumes that the state of the learner undergoes direct changes, as
the old hypothesis is replaced by a new hypothesis. In the Aspects-
style framework (Chomsky 1965), it is assumed (Wexler &
Culicover 1980, Berwick 1985) that when presented with a
sentence that the learner is unable to analyze with the present set
of rules, an appropriate rule is added to the current hypothesis.
Hence, a new hypothesis is formed to replace the old. With the
advent of the P&P framework, acquiring a language has been
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viewed as setting the appropriate parameters. An influential way
to implement parameter setting is the triggering model (Chomsky
1981, Gibson & Wexler 1994). In a typical triggering algorithm, the
learner changes the value of a parameter in the present grammar
if the present grammar cannot analyze an incoming sentence and
the grammar with the changed parameter value can. Again, a new
hypothesis replaces the old hypothesis. Note that in all TL models,
the learner changes hypotheses in an all-or-nothing manner;
specifically for the triggering model, the UG-defined parameters
are literally ‘triggered’ (switched on and off) by the relevant
evidence. For the rest of our discussion, we will focus on the trig-
gering model {Gibson & Wexler 1994), representative of the TL
models in the UG-based approach to language acquisition.

2.1.1 Formal insufficiency of the triggering model

It is by now well known that Gibson & Wexler’s triggering model
has a number of formal problems (see Berwick & Niyogi 1996,
Frank & Kapur 1996, Dresher 1599). The first problem concerns
the existence of local maxima in the learning space. Local maxima
are non-target grammars from which the learner can never reach
the target grammar? By analyzing the triggering model as a
Markovian process in a finite space of grammars, Berwick &
Niyogi (1996) have demonstrated the pervasiveness of local
maxima in Gibson and Wexler’s {very small) three-parameter
space. Gibson & Wexler (1994) suggest that the local maxima
problem might be circumvented if the learner starts from a
default parameter setting, a ‘safe’ state, such that no local maxi-
mum can ever be encountered. However, Kohl (1999), using an
exhaustive search in a computer implementation of the triggering
model, shows that in a linguistically realistic twelve-parameter
space, 2,336 of the 4,096 grammars are still not learnable even

* The present discussion concerns acquisition in a homogeneous environment in
which all input data can be identified with a single, idealized ‘grammar’. For historical
reasons we continue to refer to it by the tradirional rerm “target grammar’.
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with the best default starting state. With the worst starting state,
3,892 grammars are unlearnable. Overall, there are on average
3,348 unlearnable grammars for the triggering model?

A second and related problem has to do with the ambiguity of
input evidence. In a broad sense, ambiguous evidence refers to
sentences that are compatible with more than one grammar. For
example, a sentence with an overt thematic subject is ambiguous
between an English-type grammar, which obligatorily uses
subjects, and a Chinese-type grammar, which optionally uses
subjects. When ambiguous evidence is presented, it may select
any of the grammars compatible with the evidence and may
subsequently be led to local maxima and unlearnability. To
resolve the ambiguity problem, Fodor’s (1998) Structural Trigger
Learner {STL) model assumes that the learner can determine
whether an input sentence is unambiguous by attempting to
analyze it with multiple grammars. Only evidence that unam-
biguously determines the target grammar triggers the learner to
change parameter values. Although Fodor shows that there is
unambiguous evidence for each of the eight grammars in Gibson
& Wexler’s three-parameter space, such optimistic expectations
may not hold for a large parametric space in general (Clark 1992,
Clark & Roberts 1993; we return to this with a concrete example
in section 2.3.3). Without unambiguous evidence, Fodor’s revised
triggering model will not work.

Lastly, the robustness of the triggering model has been called
into question. As pointed out by Osherson et al. (1984), Randall
(1990), and Valian (1990), even a small amount of noise can lead
the triggering-like transformational models to converge on a
wrong grammar. [n a most extreme form, if the last sentence the

* Niyogi & Berwick {1955} argue that ‘mis-convergence’, i.e. the learner aitaining a
gramymar that is different from target gramumar, is what makes language change possi-
ble: hence formal insufficiency of the triggering model may be a virtue instead of a
defect. However, empirical facts from diachronic studies suggest a different picture of
how language changes; see Ch. 5. In addition, whatever positive implications of miscon-
vergence are surely negated by the overwhelming failure to converge, as Kohl's results
show, :
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learner hears just before language acquisition stops happens to
be noise, the learning experience during the entire period of
language acquisition is wasted. This scenario is by no means an
exaggeration when a realistic learning environment is taken into
account. Actual linguistic environments are hardly uniform with
respect to a single idealized grammar, For example, Weinreich et
al. (1968: 101) observe that it is unrealistic to study language as a
‘homogeneous object, and that the ‘nativelike command of
heterogeneous structures is not a matter of multidialectalism or
“mere” performance, but is part of unilingual linguistic compe-
tence’ To take a concrete example, consider again the acquisition
of subject use. English speakers, who in general use overt
subjects, do occasionally omit them in informal speech, e.g.
Seems good to me. This pattern, of course, is compatible with an
optional subject grammar. Now recall that a triggering learner
can alter its hypothesis on the basic of a single sentence.
Consequently, variability in linguistic evidence, however sparse,

may still lead a triggering learner to swing back and forth

between grammars like a pendulum.

2.1.2  Developmental incompatibility of the trigger-
ing model :

While it might be possible to salvage the triggering modetl to
meet the formal sufficiency condition {e.g. via a random-walk
algorithm of Niyogi & Berwick 1996; but cf. Sakas & Fodor
2001), the difficulty posed by the developmental compatibility
condition is far more serious. In the triggering model, and in
fact in all TL models, the learner at any one time is identified
with a single grammar. If such models are at all relevant to the
explanation of child language, the following predictions are
inevitable: '

(16} a. The learner’s linguistic production ought to be consistent with
respect to the grammar thai is currently assumed.
b. As the learner moves from grammar to grammar, abrupt changes in
linguistic expressions should be observed.
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To the best of my knowledge, there is in general no developmen-
tal evidence in support of either (16a) or (16b).

A good test case is again children’s null subjects (NS), where we
have a large body of quantitative and crosslinguistic data. First,
consider the prediction in (16a), the consistency of child language
with respect to a single grammar defined in the UG space.
Working in the P&P framework, Hyams (1986), in her ground-
breaking work, suggests that English child NS results from mis-
setting their language to an optional-subject grammar such as
Italian, in which subject drop is grammatical. However, Valian
(1991) shows that while Italian children drop subjects in 70% of all
sentences, the NS ratio is only 31% for American children in the
same age group. This statistical difference renders it unlikely that
English children initially use an Italian-type grammar.
Alternatively, Hyams (1991) suggests that during the NS stage,
English children use a discourse-based, optional-subject gram-
mar like Chinese. However, Wang et al. (1992) show that while
subject drop rate is only 26% for American children during the
NS stage (2;0-3;0),% Chinese children in the same age group drop
subjects in 55% of all sentences. Furthermore, if English children
did indeed use a Chinese-type grammar, one predicts that object
drop, grammatical in Chinese, should also be robustly attested
(see section 4.3.2 for additional discussion). This is again incor-
rect: Wang et al. (1992) find that for 2-year-olds, Chinese children
drop objects in 20% of sentences containing objects and
American children only 8%. These comparative studies conclu-
sively demonstrate that subject drop in child English cannot be
identified with any single adult grammar.

Turning now to the triggering models’ second prediction for
language development (16b), we expect to observe abrupt changes

4 This figure, as well as Valian's {1991), is lower than those reported elsewhere in the
literanure, e.g. Bloom (1993}, Hyams & Wexler (1993} However, there is good reason to
believe that around 30% is a more accnrate estimate of children’s NS rate. In partica-
lar, Wang et al. (1992) excluded children’s NS sentences such as infinitives and gerunds
that would be acceptable in adult English; see Phillips (1995} for an extended discussion
on the counting procedure. :
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in child language as the learner switches from one grammar to
another. However, Bloom (1993) found no sharp changes in the
frequency of subject use throughout the NS stage of Adam and
Rve, two American children studied by Brown (1973). Behrens
(1993) reports similar findings in a large longitudinal study of
German children’s NS stage. Hence, there is no evidence for a
radical reorganization—parameter resetting (Hyams & Wexer
1993 )=—of the learner’s grammar. In section 4.1 we will show that
for Dutch acquisition, the percentage of V2 use in matrix
sentences also rises gradually, from about 50% at 2;4 to 85% at 350.
Again, there is no indication of a radical change in the child’s
grammar, contrary to what the triggering model entails. Overall,
the gradualness of langnage development is unexpected in the
view of all-or-none parameter setting, and has been a major argu-
ment against the parameter-setting model of language acquisition
(Valian 1990, 1991, Bloom 1990, 1993), forcing many researchers to
the conclusion that child and adult language differ not in compe-
tence but in performance.

2.1.3 Imperfection in child language?

So the challenge remains: what explains the differences between
child and adult languages? As summarized in Chapter 1 and
repeated below, two approaches have been advanced to account
for the differences between child and adult languages:

(17) & Children and adults differ in linguistic pefformance.
b. Children and adults differ in grammatical competence.

The performance deficit approach (17a) is often stated under
the Continuity Hypothesis {Macnamara 1982, Pinker 1984). It
assumes an identity relation between child and adult competence,
while attributing differences between child and adult linguistic
forms to performance factors inherent in production, and
(nonlinguistic) perceptual and cognitive capacities that are still
underdeveloped at a young age (e.g. Pinker 1984, Bloom 1990,
1993, Gerken 1991, Valian 1991).

A Variational Model 23

The competence deficit approach (17b) is more often found in
works in the parameter-setting framework. In recent years it has
been claimed (Hyams 1996, Wexler 1998), in contrast to earlier
ideas of parameter mis-setting, that the parameter values are set
correctly by children very early on. The differences between child
language and adult language have been attributed to other deficits
in children’s grammatical competence. For example, one influen-
tial approach to the OI phenomenon reviewed in section 1.2.2
assumes a deficit in the Tense/Agreement node in children’s
syntactic representation {Wexler 1994): the Tense/Agreement
features are missing in young children during the ROI stage.
Another influential proposal in Rizzi’s (1994) Truncation
Hypothesis holds that certain projections in the syntactic repre-
sentation, specifically CP, are missing in young children’s knowl-
edge of language. The reader is referred to Phillips (1995) for a
review and critique of some recent proposals along these lines.

Despite the differences between the two approaches, a
common theme can be identified: child language is assumed to
be an imperfect form of adult language, perturbed by either
competence or performance factors. In section 1.2.3, we have
already noted some methodological pitfalls associated with such
explanatorily discontinuous accounts. More empirically, as we
shall see in Chapters 3 and 4, the imperfection perspective on
child language leaves many developmental patterns unex-
plained. To give a quick preview, we will see that children’s over-
regularization errors (hold-holded) reveal important clues on
how phonology is structured and learned, and should not be
regarded as sitnple memory retrieval failures as in Pinker (1999).
We will see that when English children drop subjects in Wh
questions, they do so almost always in adjunct (where, how)
questions, but almost never in argument (who, what) quesiions:
a categorical asymmetry not predicted by any imperfection
explanation proposed so far. We will document the robust use

5 Although it is not clear how parameters are set {correctly}, given the formal insuf-
ficiency of the triggering model reviewed earlier.
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(approximately 50%) of V1 patterns in children acquiring Va:
hence, 50% of ‘imperfection’ to be explained away.

This concludes our very brief review of the leading approaches
to language acquisition, While there is no doubt that innate UG
knowledge must play a crucial role in constraining the child’s
hypothesis space and the learning process, there is one component
in the GSL approach that is too sensible to dismiss. That is, statis-
tical learning seemns most naturally suited to modeling the gradu-
alness of language development. In the rest of this chapter we
propose a new approach that incorporates this useful aspect of
the GSL model into a generative framework: an innate UG
provides the hypothesis space and statistical learning provides the
mechanism. To do this, we draw inspiration from Darwinian
evolutionary biology.

2.2 The variational approach to language acqui-
sition -

2.2.1 The dynamics of Darwinian evolution

We started the discussion of child language by noting the varia-
tion between child and adult languages. It is a fundamental ques-
tion how such variation is interpreted in a theory of language
acquisition. Here, the conceptual foundation of Darwinian evolu-
tionary thinking provides an informative lesson.

Variation, as an intrinsic fact of life, can be observed at many
levels of biclogical organizations, often manifested in physiologi-
cal, developmental, and ecological characteristics. However, vari-
ation among individuals in a population was not fully recognized
until Darwin’s day. As pointed out by Ernst Mayr on many occa-
sions (in particular, 1963, 1982, 1993}, it was Darwin who first real-
ized that the variations among individuals are ‘real’: individuals in
a population are inherently different, and are not mere ‘imperfect’
deviations from some idealized archetype.

Once the reality of variation and the uniqueness of individuals
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were recognized, the correct conception of evolution became
possible: variations at the individual level result in fitness varia-
tions at the population level, thus allowing evolutionary forces
such as natural selection to operate. As R. C. Lewontin remarks,
evolutionary changes are hence changes in the distribution of
different individuals in the population:

Before Darwin, theories of historical change were all fransformational. That is,
systems were seen as undergoing change in time because each element in the
system underwent an individual transformation during its history. Lamarck’s
theory of evolution was transformational in regarding species as changing
because each individual organism within the species underwent the same
change. Through inner will and striving, an organism would change its nature,
and that change in nature would be transmitted to its offspring.

In contrast, Darwin proposed a variational principle, that individual
members of the ensemble differ from each other in some properties and that
the system evoives by changes in the proportions of the different types. There
i8 a sorting-out process in which some variant types persist while others disap-
pear, so the nature of the ensemble as a whole changes without any suceessive
changes in the individual members. (Lewontin 1983: 65-6; italics original.)

For scientific observations, the message embedded in
Darwinian variational thinking is profound. Non-uniformity in a
sample of data often should, as in evolution, be interpreted as a
collection of distinct individuals: variations are therefore real and
expected, and should not be viewed as ‘imperfect’ forms of a
single archetype. In the case of language acquisition, the differ-
ences between child and adult languages may not be the child’s
imperfect grasp of adult language; rather, they may actually
reflect a principled grammatical system in development and tran-
sition, before the terminal state is established. Similarly, the
distinction between transformational and variational thinking in
evolutionary biology is also instructive for constructing a formal
model of language acquisition. Transformational learning models
identify the learner with a single hypothesis, which directly
changes as input is processed. In contrast, we may consider a vari-
ational theory in which language acquisition is the change in the
distribution of I-language grammars, the principled variations in
human language.



26 A Variational Model

In what follows, we present a learning model that instantiates
the variational approach to language acquisition. The compufa-
tional properties of the model will then be discussed in the context
of the formal sufficiency condition on acquisition theories.

2.2.2 Language acquisition as grammar competition

To explain the non-uniformity and the gradualness in child
language, we explicitly introduce statistical notions into our
learning model. We adopt the P&P framework, i.e. assuming that
there is only a finite number of possible human grammars, vary-
ing along some parametric dimensions. We also adopt the
strongest version of continuity hypothesis, which says, without
evidence to the contrary, that UG-defined grammars are accessi-
ble to the learner from the start. '

Each grammar G, is paired with a weight p, which can be
viewed as the measure of prominence of G, in the learner’s
language faculty. In a linguistic environment E, the weight p(E,
£} is determined by the learning function £, the linguistic
evidence in E, and the time variable £, the time since the outset of
language acquisition. Learning stops when the weights of all
grammars are stabilized and do not change any further,® possibly
corresponding to some kind of critical period of development. In
particular, in an idealized environment where all linguistic
expressions are generated by a ‘target’ grammar T—again, keep-
ing to the traditional terminology—we say that learning
converges to target if p.= 1 when learning stops. That is, the target
grammar has eliminated all other grammars in the population as
a result of learning.

The learning model is schematically shown below:

18) Upon the presentation of an input datum s, the child
2. selects a grammar G, with the probability p;
b. analyzes s with G,

% This does not mean that learning necessarily converges to a single gramunar; see
{24) below.
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c. « if successful, reward G, by increasing p;
« otherwise, punish G, by decreasing p;

Metaphorically speaking, the learning hypotheses——the gram-
mars defined by UG—compete: grammars that succeed in analyz-
ing a sentence are rewarded and those that fail are punished. As
learning proceeds, grammars that have overall more success with
the data will be more prominently represented in the learner’s
hypothesis space. -

An example illustrates how the model works. Imagine the
learner has two grammars, G, the target grammar used in the
environment, and G, the competitor, with associated weights of
p, and p, respectively. Initially, the two grammars are undifferen-
tiated, i.e. with comparable weights. The learner will then have
comparable probabilities of selecting the grammars for both
input analysis and sentence production, following the nuli
hypothesis that there is a single grammatical system responsible
for both comprehension/learning and production. At this time,
sentence sequences produced by the learner will look like this:
(19) Early in acquisition:

SGJ’ SG}’ st’ SG:’ SG‘z’ SG:’ .
where S indicates a sentence produced by the grammar G/

As learning proceeds, G, which by assumption is incompatible
with at least some input data, will be punished and its weight will
gradually decrease. At this stage of acquisition, sequences
produced by the learner will look like this:

(20) Intermediate in acquisition:
SGJ’ SG:’ SGz’ SGJ’ SG!’ SGI t
where G, will be more and more dominantly represented.
When learning stops, G, will have been eliminated (p, = o) and
G, is the only grammar the learner has access to:

(21) Completion of acquisition:
SGP SG.I’ SG‘J’ SGx’ SG}’ SGJ’ T

7 It is possible that some sentences are ambiguous between G, and G, which may
extensionally overlap.
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Of course, grammars do not actually compete with each other:
the competition metaphor only serves to illustrate (a) the gram-
mars’ coexistence and (b) their differential representation in the
Jearner’s language faculty. Neither does the learner play God by
supervising the competition of the grammars and selecting the
winners.® We will also stress the passiveness of the learner in the
learning process, conforming to the research strategy of a ‘dumb’
learner in language acquisition. That is, one does not want to
endow the learner with too much computational power or too
much of an active role in learning. The justification for this mini-
mum assumption is twofold. On the one hand, successful
language acquisition is possible, barring pathological cases, irre-
spective of ‘general intelligence’; on the other, we simply don’t
have a theory of children’s cognitive/computational capacities to
put into a rigorous model of acquisition—an argument from
ignorance. Hence, we assume that the learner does not contem-
plate which grammar to use when an input datum is presented.
He uses whichever happens to be selected with its associated
weight/probability. He does not make active changes to the
selected grammar (as in the triggering model), or reorganize his
grammar space, but simply updates the weight of the grammar
selected and moves on.

Some notations. Write s € E if a sentence s is an utterance in the
linguistic environment E. We assume that during the time frame of
language acquisition, E is a fixed environment, from which s is
drawn independently. Write G — s if a grammar G ¢an analyze s,
which, as a special case, can be interpreted as parsability (Wexler &
Culicover 1980, Berwick 198s), in the sense of strong generative
capacity. Clearly, the weak generative notion of string-grammar
acceptance does not affect formal properties of the model
However, as we shall see in Chapter 4, children use their morpho-
logical knowledge and domain-specific knowledge of UG—strong

8 In this respect, the variational model differs from a similar model of acquisition
(Clark 1992}, in which the learner is viewed as a genetic algorithm that explicitly evalu-
ates grammar fitness. We return to this in section 2.5, :

A Variational Model 29

generative notions—to disambiguate grammars. It is worth
noting that the formal properties of the model are independent of
the definition of analyzability: any well-defined and empirically
justified notion will suffice. Our choice of string-grammar
compatibility obviously eases the evaluation of grammars using
linguistic corpora.

Suppose that there are altogether N grammars in the population.
For simplicity, write p; for p(E, f) at time #, and p; for p/(E, £ +1) at
time £ + 1. Bach time instance denotes the presentation of an input
sentence. In the present model, learning is the adaptive change in
the weights of grammars in response to the sentences successively
presented to the learner. There are many possible instantiations of
competition-based learning.? Consider the one in (22):

(22) Given an input sentence s, the learner selects a grammar G; with proba-
bility pz

pi=pi+yt-p)

P}"““ {1—7’}}9]' ifj=i

= 0=y

a. if G;— sthen {

b. if G, -»sthen ,

+(-ypp;  ifj#i
-1

{22} is the Linear reward-penalty (L, ;) scheme (Bush &
Mosteller 1951, 1958), one of the earliest, simplest, and most exten-
sively studied learning models in mathematical psychology. Many
similar competition-based models have been formally and exper-
imentally studied, and receive considerable support from human
and and animal learning and decision-making; see Atkinson et al.
{(1965) for a review.

Does the employment of a general-purpose learning model
from the behaviorist tradition, the Ly p, signal a return to the
Dark Ages? Absolutely not. In competition learning models, what
is crucial is the constitution of the hypothesis space. In the origi-
nal L, , scheme, the hypothesis space consists of simple responses

# See Yang & Gutmann (1999) for a model that uses a Hebbian style of update rules.
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conditioned on external stimulus; in the grammar competition
model, the hypothesis space consists of Universal Grammar, a highly
constrained and finite tange of possibilities. In addition, as
discussed in Chapter 1, it seems unlikely that language acquisition
can be equated to data-driven learning without prior knowledge.
And, as will be discussed in later chapters in addition to humerous
other studies in language acquisition, in order adequately to account
for child language development, one needs to make reference to
specific characterization of UG supplied by linguistic theories.
There is yet another reason for having an explicit account of
the learning process: because language is acquired, and thus the
composition, distribution, and other properties of the input
evidence, in principle, matter. The tandmark study of Newport et
al. (1977) is best remembered for debunking the necessity of the
so-called ‘“Motherese’ for language acquisition, but it also shows
that the development of some aspects of language does correlate
with the abundance of linguistic data. Specifically, children who
are exposed to more yes/no questions tend to use auxiliary verbs
faster and better. An explicit model of learning that incorporates

the role of input evidence may tell us why such correlations exist

in some cases, but not others (e.g: the null subject pheriomenon).
The reason, as we shall see, lies in the Universal Grammar.

Hence, our emphasis on L is simply a plea to pay attention to
the actual mechanism of language development, and a concrete
proposal of what it might be.

2.3 The dynarhics of variational learning

We now turn to the computational properties of the variational
model in (22).

2.3.1 Asymptotic behaviors

In any competition process, some measure of fitness is required.
Adapting the formulation of Bush & Mosteller (1958), we may
offer the following definition:
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(23) The penalty probability of grammar G, in a linguistic environment Fis
¢;=Pr(G; » s{se E)

The penalty probability ¢; represents the probability that a
grammar G, fails to ana]yze an mcoming sentence and gets
punished as a result. In other words, ¢; is the percentage of
sentences in the environment with which the grammar G; is
incompatible. Notice that penalty probability is a fixed property
of a grammar relative to a fixed linguistic environment E, from
which input sentences are drawn.

For example, consider a Germanic V2 environment, where the
main verb is situated in the second constituent position. A V2
grammar, of course, has the penalty probability of 0.° An
English-type SVO grammar, although not compatible with all V2
sentences, is nevertheless compatible with a certain proportion of
them. According to a corpus analysis cited in Lightfoot {1997},
about 70% of matrix sentences in modern V2 languages have the
surface order of SVO: an SVO grammar therefore has a penalty
probability of 30% in a V2 environment. Since the grammars in
the delimited UG space are fixed—it is only their weights that

 change during learning—their fitness values defined as penalty

probabilities are also fixed if the linguistic environment is, by
assumption, fixed. '

It is crucial to realize that penalty probability is an extensionally
defined property of grammars. It is a notion used, by the linguist,
in the formal analysis of the learning model. It is not a compo-
nent of the learning process. For example, the learner needs not
and does not keep track of frequency information about sentence
patterns, and does not explicitly compute the penalty probabili-
ties of the competing grammars. Nor is penalty probability repre-
sented or accessed in during learning, as the model in (22) makes
clear.

10 For expository ease we will keep to the fitness measure of whole grammars in the
present discussion. In section 2.4 we will place the model in a more realistic P&P gram-
mar space, and discuss the desirable consequences in the reduction of computational
cost.
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The asymptotic properties of the L, , model have been exten-

sively studied in both mathematical psychology (Norman 1972)

and machine learning {Narendra & Thathachar 1989, Barto & '

Sutton 1998). For simplicity but without loss of generality,
suppose that there are two grammars in the population, G, and
G, and that they are associated with penalty probabilities of ¢,
and c, respectively. If the learning rate y is sufficiently small, ie.
the learner does not alter his ‘confidence’ in grammars too radi-
cally, one can show (see Narendra and Thathachar 1989: 162-5)

that the asymptotic distributions of p (£} and p,(#) will be essen- -

tially normal and can be approximated as follows:

{24) Theorem:

lim, , p{8)=
g+,
s C]
lim, _ p,(t) =
5+,

(24) shows that in the general case, grammars more compatible
with the input data are better represented in the population than
those less compatible with the input data as the result of learning,

2.3.2  Stable multiple grammars

. Recall from section 2.1.1 that realistic linguistic environments are
usually heterogeneous, and the actual linguistic data cannot be
attributed to a single idealized ‘grammar’. This inherent variabil-
ity poses a significant challenge for the robustness of the trigger-
ing model. '

How does the variational model fare in realistic environments

that are inherently variable? Observe that non-homogeneous
linguistic expressions can be viewed as a probabilistic combina-
tion of expressions generated by multiple grammars. From a
learning perspective, a non-homogeneous environment induces a
population of grarnmars none of which is 100% compatible with
the input data. The theorem in (24) shows that the weights of two
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{or more, in the general case) grammars reach a stable equilib-
rium when learning stops. Therefore, the variability of a speaker’s
linguistic competence can be viewed as a probabilistic combina-
tion of multiple grammars. We note in passing that this interpre-
tation is similar to the concept of ‘variable rules’ (Labov 1969,
Sankoff 1978), and may offer a way to integrate generative
linguists’ idealized grammars with the study of language variation
and use in linguistic performance. In Chapter 5, we extend the

acquisition model to language change. We show that a combina-

tion of grammars as the result of acquisition, while stable in a
single (synchronic) generation of learners, may not be diachron-
ically stable. We will derive certain conditions under which one
grammar will inevitably replace another in a number of genera-
tions, much like the process of natural selection. This formalizes
historical linguists’ intuition of grammar competition as a mech-
anism for language change.

Consider the special case of an idealized environment in which
all linguistic expressions are generated by an input grammar G,.
By definition, G, has a penalty probability of o, while all other
grammars in the population have positive penalty probabilities. It
is easy to see from (24) that the p, converges to 1, with the compet-
ing grammars eliminated. Thus, the variational model meets the
traditional learnability condition.

Empirically, one of the most important features of the varia-
tional model is its ability to make quantitative predictions about
language development via the calculation of the expected change
in the weights of the competing grammars. Again, consider two
grammars, target G, and the competitor G,, with ¢, =0 and ¢, >
o. At any time, p, + p, = 1. With the presentation of each input
sentence, the expected increase of p,, E[Ap ], can be computed as

follows:

(z5) Elap) = pyla-p)+ with Pr. p, G, is chosen and G, — s
p,(i—c) (~¥p, + with Pr. p.(1—¢,}, G,ischosen and G, — s
peya—p) with Pr. pc,, G, is chosen and G, + §

= 27’(1 ”"Px)
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Although the actual rate of language development is hard to
predict—it would rely on an accurate estimate of the learning
parameter and the precise manner in which the learner updates
grammar weights—the model does make comparative predic-
tions on language development. That is, ceteris paribus, the rate
at which a grammar is learned is determined by the penalty
probability (c,) of its competitor. By estimating penalty proba-
bilities of grammars from CHILDES (25) allows us to make
longitudinal predictions about language development that
can be verified against actual findings. In Chapter 4, we do just
that.

Before we go on, a disclaimer, or rather, a confession, is in
order. We in fact are not committed to the L, , model per se:
exactly how children change grammar weights in response to
their success or failure, as said earlier, is almost completely
unknown. What we are committed to is the mode of learning:
coexisting hypotheses in competition and gradual selection, as
schematically illustrated in (18), and elaborated throughout
this book with case studies in child language. The choice of the
Ly_p model is justified mainly because it allows the learner to
converge to a stable equilibrizm of grammar weights when the
linguistic evidence is not homogeneous (24). This is needed to
accommodate the fact of linguistic variation in adult speakers
that is particularly clear in language change, as we shall see in
Chapter 5. There are doubtlessly many other models with simi-
lar properties.

2.3.3 Unambiguous evidence

The theorem in (24) states that in the variational model, conver-
gence to the target grammar is guaranteed if all competitor gram-
mars have positive penalty probabilities. One way to ensure this is
to assume the existence of unambiguous evidence (Fodor 1998):
sentences that are compatible only with the target grammar, and
not with any other grammar. While the general existence of
unambiguous evidence has been questioned (Clark 1992, Clark &
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Roberts 1993}, the present model does not require unambiguous
evidence to converge in any case.

To illustrate this, consider the following example. The target of
learning is a Dutch V2 grammar, which competes in a population
of (prototype) grammars, where X denotes an adverb, a preposi-
tional phrase, and other adjuncts that can freely appear at the
initial position of a sentence:

(26} a. Dutch: SVO, XVSO, OVS
b. Hebrew: SVO, XVSO
c. English: VO, XSVO
d. Irish: VSO, XVSO
e. Hixkaryana: OVS, XOVS

The grammars in (26} are followed by some of the matrix
sentences word orders they can generate/analyze. Observe that
none of the patterns in (26a) alone could distinguish Dutch from
the other four human grammars, as each of them is compatible
with certain V2 sentences. Specifically, based on the input
evidence received by a Dutch child (Hein), we found that in
declarative sentences, for which the V2 constraint is relevant,
64.7% are SVO patterns, followed by XVSO patterns at 34% and
only 1.3% OVS patterns.’* Most notably, Hebrew, and Semitic in
general, grammar, which allows VSO and SVO alternations
(Universal 6: Greenberg 1963; see also Fassi-Fehri 1993, Shlonsky
1997), is compatible with 98.7% of V2 sentences.

Despite the lack of unambiguous evidence for the V2 grammar,

‘as long as SVO, OVS, and XVSQ patterns appear at positive

frequencies, all the competing grammars in (26} will be punished.
The V2 grammar, however, is never punished. The theorem in
(24) thus ensures the learner’s convergence to the target V2 gram-
mar. The competition of grammars is illustrated in Fig. 2.1, based

~ on a computer simulation.

" For simplicity, we assume a degree-o learner in the sense of Lightfoot {1991), for
which we can find relevant corpus statistics in the literature.
2 Thagnks to Edith Kaan for her help in this corpus study.

- %
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FiGURE 21. The convergence to the Va grammar in the absence of unambiguous
evidence

2.4 Learning grammars in a parametric space

The variational model developed in the preceding sections is
entirely theory-neutral. It only requires a finite and non-arbitrary
space of possible grammars, a conclusion accepted by many of
today’s linguists.’® Some interesting questions arise when we situ-
ate the learning model in a realistic theory of grammar space, the
P&P model.

2.4.1 Parameter interference

So far we have been treating competing grammars as individual
entities; we have not taken into account the structure of the

% Different theories of UG will yield different generalizations: when situated into
a theory-neutral learning modei, they will—if they are not merely notational
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grammar space. Although the convergence result in (24) for two
grammars generalizes to any number of grammars, it is clear that
when the number of grammars increases, the number of gram-
mar weights that have to be stored also increases. According to
some estimates (Clark 1992; cf. Kayne 2000, Baker 2001}, 3040
binary parameters are required to give a reasonable coverage of
the UG space. And, if the grammars are stored as individual -
wholes, the learner would have to manipulate 23— grammar
weights: now that seems implausible.

It turns out that a parametric view of grammar variation, inde-
pendently motivated by comparative theoretical linguistics,
dramatically reduces the computational load of learning. Suppose
that there are n binary parameters, &, &, . - ., ,, which can spec-
ify 2" grammars. Each parameter g is associated with a weight p,
the probability of the parameter a; being 1. The weights constitute
an n-dimensional vector of real numbers between [o,1}: P = (p,,
Pyro o P

Now the problem of selecting a grammar becomes the problem
of selecting a vector of 5 os and 15, which can be done indepen-
dently according to the parameter weights. For example, if the
current value of p, is 0.7, then the learner has a 70% chance of
selecting 1 and a 30% chance of selecting o. As the value of p,
changes, so will the probability of selecting 1 or 0. Now, given a
current parameter weight vector P = (p, P, .- o P,)» the learner
can non-deterministically generate 2 string of os and 1s, which is
a grammar, G. Write this as P = G, and the probability of P = G
is the product of the parameter weights with respect to G’s para-
meter values. P gives rise to all 2" grammars; as P changes, the
probability of P = G also changes. When P reaches the target
vector, then the probability of generating non-target grammars
will be infinitely small.

{27) describes how P generates a grammar to analyze an
incoming sentence:

variants—make different developmental predictions. The present model can then be used
as an independent procedure to evaluate linguistic theories, See Ch. 6 for a brief discussion,
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(27} For each incoming sentence s
a. Por parameteri,i=1,2,...,n
»  with probability p, choose the value of o; to be 1;
+ with probability 1 — p;, choose the value of @, to be 0.
b. Let G be the grammar with the parameter values chosen in (z7a).
c. Analyze s with G,
d. Update the parameter values to P’ = (p/, p.". .. . p,") accordingly.

Now a problem of parameter interference immediately arises.
Under the parametric representation of grammars, grammar
selection is based on independent parameters. By contrast, fitness
measure and thus the outcome of learning—reward or punish-
ment—is defined on whole grammars. How does the learner infer,
backwards, what to do with individual parameter weights, from
their collective fitness as a composite grammar? In other words,
what is the proper interpretation of accordingly in the parameter
learning model (27)?

To be concrete, suppose we have two independent parameters:
one determines whether the language has overt Wh movement (as
in English but not Chinese), and the other determines whether
the language has verb second (V2), generally taken to be the
movement of inflected verbs to matrix Complementizer position,
as in many Germanic languages. Suppose that the language to be
acquired is German, which has [+Wh] and [+V2]. When the
parameter combination {+Wh, —V2] is chosen, the learner is
presented with a declarative sentence. Now although [+Wh} is the
target value for the Wh parameter, the whole grammar [+Wh,
~V2} is nevertheless incompatible with a V2 declarative sentence
and will fail. But should the learner prevent the correct parame-
ter value [+Wh] from being punished? If so, how? Similarly, the
grammar [~Wh, +V2] will succeed at any declarative German
sentence, and the wrong parameter value {-Wh], irrelevant to the
input, may hitch a ride and get rewarded.

So the problem is this. The requirement of psychological plau-
sibility forces us to cast grammar probability competition in terms
of parameter probability competition. This in turns introduces
the problem of parameter interference: updating independent
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parameter probability is made complicated by the success/failure
of the composite grammar. In what follows, we will address this
problem from several angles that, in combination, may yield a
decent solution.

2.4.2 Independent parameters and signatures

To be sure, not all parameters are subject to the interference prob-
lem. Some parameters are independent of other parameters, and
can be learned independently from a class of input examples that
we will call signatures. Specifically, with respect to a parameter o,
its signature refers to s, a class of sentences that are analyzable
only if & is set to the target value. Furthermore, if the input
sentence does not belong to s, the value of & is not material to the
analyzability of that sentence.

In the variational model, unlike the cue-based learning model
to be reviewed a little later, the signature~parameter association
need not be specified a priori, and neither does the learner
actively search for signature in the input. Rather, signatures are
interpreted as input whose cumulative effect leads to correct:
setting of parameters. Specifically, both values of a parameter are
available to the child at the outset. The non-target value, however,
is penalized upon the presentation of ‘signatures, which, by defi-
nition, are only compatible with the target value. Hence, the non-
target value has a positive penalty probabikity, and will be
eliminated after a sufficient number of signatures have been
encountered. '

The existence of signatures for independent parameters is
useful in two important ways. On the one hand, it radically
reduces the problem of parameter interferences. For every para-
meter that is independent, the learning space is in effect cut by
half; we will clarify this claim shortly, in section 2.4.4. On the

% This also suggests that when proposing syntactic parameters, we should have the
problem of acquisition in mind. When possible, parameters that can be independently
learned better serve the goal of explanatory adequacy in reducing the cognitive load of
child language acquisition.
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other hand, parameters with signatures lead to longitudinal
predictions that can be directly related to corpus statistics. For
two such parameters, we can estimate the frequencies of their
respective signature, and predict, on the basis of (25), that the
parameter with more abundant signatures be learned sooner than
the other. In Chapter 4, we will see the acquisition of several inde-
pendent parameters that can be developmentally tracked this way.

So what are these independent parameters? Of the better-
established parameters, a few are obviously independent. The Wh
movement parameter is a straightforward example. Wh words
move in English questions, but not in Chinese questions, and Wh
questions will serve to unambiguously determine the target
values of this parameter, regardless of the values of other para-
meters. For non- Wh sentences, the Wh parameter obviously has
no effect. '

Another independent parameter is the verb raising parameter
that determines whether a finite verb raises to Tense: French sets
this parameter to 1, and English, o (Emonds 1978, Pollock 1989).
The 1 value for this parameter is associated with signature such as
(28), where finite verbs precede negation/adverb:"

(28) a. Jean ne mange pas de fromage.
Jean neeats  no of cheese.
‘John does not eat cheese.
b. Jean mange souvent du fromage.
Jean eats often  of cheese.
‘Tohn often eats cheese.”

Yet another independent parameter is the obligatory subject
parameter, for which the positive value {e.g. English} is associated
with the use of pure expletives such as there in sentences like
There is a train in the house.

5 Although it is possible that the verb does not stop at Tense but raises further to
higher nodes {as in verb-second environments), the principle of the Head Movement
Constraint (Travis 1984), or more generally economy conditions {Chomsky 1905b),
would prohibit such raising to skip the intermedtiate Tense node. Therefore, finite verbs
followed by negation or adverbs in a language indicate that the verb must raise at Jeast
to Tense.

A Variational Model #1

‘What about the parameters are not independent, whose values
can not be directly determined by any particular type of input
data? In section 2.4.3 we review two models that untangle para-
meter. interference by endowing the learner with additional
resources. We then propose, in section 2.4.4, a far simpler model
and study its forthal sufficiency. Our discussion is somewhat tech-
nical; the disintérested reader can go straight to section 2.5. A
fuller treatmentiof the mathematical and computational issues
can be found in Yang (in press). :

2.4.3 Interference avoidance models

One approach is to give the learner the ability to tease out the
relevance of parameters with respect of an input sentence. Podor’s
(1998) Structural Trigger Learner (STL) takes this approach. The
STL has access to a special parser that can detect whether an input
sentence is parametrically ambiguous. If so, the present parame-
ter values are left unchanged; parameters are set only when the
input is completely unambiguous. The STL thus aims to avoid the
local maxima problem, caused by parametric inference, in Gibson
& Wexler’s triggering model.'

The other approach was proposed by Dresher & Kaye (1990)
and Dresher (1099); see Lightfoot (1999) for an extension to the
acquisition of syntax. They note that the parameters in metrical
stress can be associated with a corresponding set of cues, input
data that can unambiguously determine the values of the para-
meters in a language. Dresher & Kaye (1990) propose that for each
parameter, the learner is innately endowed with the knowledge of
the cue associated with that parameter. In addition, each parame-
ter has a default value, which is innately specified as well. Upon
the presentation of a cue, the learner sets the value for the corre-
sponding parameter. Crucially, cues are ordered. That is, the cue

% Tesar & Smolensky Constraint Demotion modet (2000] is similar. For them, & pair
of violable constraints is (re)ordered only when their relative ranking can be unam-
biguously determined from an input datum; the detection of ambiguity involves exam-
ining other candidate rankings.
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for a parameter may not be usable if another parameter has not
been set. This leads to a particular sequence of parameter setting,
which must be innately specified. Suppose the parameter
sequence is &, @,, . . . &, associated with cues s, s,,. . ., 5, respec-
tively. (29) schematically shows the mechanisms of the cue-based
learner:
(20) a. Initialize &, @, . . ., @, with their respective default values.
b, Fori=1n2...n

+  Set o; upon seeing s;

+ Leave the set parameters @, . . ., @, , alone.

+ Reseta,,,... o, to respective default values.

In the present context, we do not discuss the formal sufficiency
of the STL and the cue-based models.”” The STL model seems to
introduce computational cost that is too high to be realistic: the
learner faces a very large degree of structural ambiguity that must
be disentangled (Sakas & Fodor 2001). The cue-based model
would only work if all parameters are associated with cues and
default values, and the order in which parameters are set must be
identified as well. While this has been deductively worked out for
about a dozen parameters in metrical stress (Dresher 1999),
whether the same is true for a non-trivial space of syntactic para-
meters remains to be seen.

Both models run into problems with the developmental
compatibility condition, detrimental to all transformational
learning models: they cannot capture the variation in and the
gradualness of language development. The STL model may main-
tain that before a parameter is conclusively set, both parameter
values are available, to which variation in child language are be

attributed. However, when a parameter is set, it is set in an all-or- '

none fashion, which then incorrectly predicts abrupt changes in
child language.
The cue-based model is completely deterministic. At any time,

¥ Both have problems: see Bertolo et al. (1997) for a formal discussion; see also
Church (1992) for general comments on the cue-based model, and Gillis et al. (1995) for
a computer simulation.
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a parameter is associated with a unique parameter value—correct
or incorrect, but not both-—and hence no variation in child
language can be accounted for. In addition, the unset parameters
are reset to default values every time a parameter is set. This
predicts radical and abrupt reorganization of child language:
incorrectly, as reviewed earlier. Finally, the cue-based model
entails that learners of all languages will follow an identical learn-
ing path, the order in which parameters are set: we have not been
able to evaluate this claim.

2.4.4 Nuive parameter learning

In what follows, we will pursue an approach that sticks to the
strategy of assuming a ‘dumb’ learner.’® Consider the algorithm in
(30), a Naive Parameter Learner (NPL):

(30) Naive Parameter Learning (NPL)
a. Reward all the parameter values if the composite grammar succeeds.
b. Punish all the parameter values if the composite grammar fails.

The NPL model may reward wrong parameter values as hitchhik-
ers, and punish correct parameter values as accomplices. The
hope is that, in the long run, the correct parameter values will
prevail.

To see how (30) works, consider again the learning of the two
parameters {Wh] and {V2] in a German environment. The
combinations of the two parameters give four grammars, of
which we can explicitly measure the fitness values (penalty prob-
abilities). Based on the CHILDES corpus, we estimate that about
30% of all sentences children hear are Wh questions,” which are
only compatible with the [+Wh! value. Of the remaining declar-
ative sentences, about 49% are SVO sentences that are consistent
with the {-V2] value. The other 21% are VS sentences with a topic

% For useful discussions I would like to thank Sam Gutmann, Julie Legate, and in
particular Morgan Sonderegger for presenting our joint work here.

1% This figure is based on English data: we are taking the liberty to extrapolate it w0
our (hypothetical) German simulation.
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in {Spec,CP], which are only compatible with the {+V2] value. We
then have the penalty probabilities shown in Table 2.1.

Fig. 2.2 shows the changes of the two parameter values over
time. We see that the two parameters, which fluctuated in earlier
stages of learning-—the target values were punished and the non-
target values were rewarded—converged correctly to [1, 1} in the
end. ’

It is not difficult to prove that for parameters with signatures,
the NPL will converge on the target value, using the Martingale
methods in Yang & Gutmann {1999); see Yang (in press) for

TARLE 2.0, The penalty probabilities of four grammars
composed of two parameters
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FIGURE 2.2. The independent learning of two parameters, Wh and V2
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details. We now turn to the more difficult issue of learning para-
meters that are subject to the interference problem.

Fitness distribution

In what follows, we will suggest that (some variant) of the NPL
may be a plausible model of learning that distangles the interfer-
ence effects from parameter interaction. :

First, our conclusion is based on results from computer simu-
lation. This is not the preferred move, for the obvious reason that
one cannot simulate all possibilities that may arise in parameter
learning. Analytical results—proofs—are much better, but so far
they have been elusive.

Second, as far as feasible, we will study the behavior of the
model in an actual learning environment. As the example of the
Wh and V2 learning (Fig. 2.2) shows, the relative fitness values of
the four composite grammars will determine the outcome of
parameter learning. In that example, if the three competitors have
high penalty probabilities, intuition tells us that the two parame-
ters rise to target values quickly.?® So the actual behavior of the
model can be understood only if we have a good handle on the
fitness distribution of actual grammars.

This is a departure from the traditional linguistic learnability
study, and we believe it is a necessary one. Learnability models, in
general, do not consider convergence in relation to the actual
(statistical) distribution of the learning data.** Rather, learning is
studied ‘in the limit’ (Gold 1967), with the assumption that learn-
ing can take an arbitrary amount of data as long as it converges
on the correct grammar in the end: hence, no sample complexity
considerations. However, it is clear that learning data is not infi-
nite. In Chapter 4 we show that it is possible to establish bounds
on the amount of linguistic data needed for actual acquisition: if

20 although intuition fades rapidly as more and more parameters combine and inter-
act.

2 A notable exception is Berwick & Niyogi’s (1906) elegant Markov modet of trig-
gering, where the expected amount of evidence required for convergence can be
precisely worked out.
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the learning data required by a model greatly exceed such bounds,
then such a model will fail the formal sufficiency condition.
Sample complexity, even if it is formally studied, means very
little unless placed in an actual context. For example, suppose one
has found models that require exactly n or »* specific kinds of input
sentences to set # parameters. The sample complexity of this model
is very small: a (low) polynomial function of the problem size. But
to claim this is an efficient model, one must show that these
sentences are in fact attested with robust frequencies in the actual
input: a model whose theoretical convergence relies on twenty
levels of embedded clauses with parasitic gaps is hopeless in reality.
In a similar vein, a model that fails under some hypothetical

conditions may not be doomed either: it is possible that such -

cases never arise in actual learning environments. For example,
computer simulation shows that the NPL model does not
converge onto the target parameter values in a reasonable amount

_of time if all of the 2" ~ 1 composite grammars have the penalty
probability of 0.1: that is, all non-target grammars are equally
good, compatible with 90% of input data, But this curious (and
disastrous) scenario does not occur in reality.

It is very difficult to know what actual penalty probability
distributions are like. To do so, one would have to consider all, at
least a large portion, of the 2" grammars. For each grammar,
which is a parameter value vector, one needs to find a corre-
sponding existing language, take a large sample of sentences from
it, and then analyze the sample with all the other 2* — 1 competi-
tors. It is obvious that each of these steps poses enormous practi-
cal problems for large numbers of n. Our experience working
with corpora (Chapter 4) suggests that there are relatively few
competing grammars with low penalty probabilities, i.e. very
close to the target grammar, whereas the vast majority of them are
bad. The example in (26), the V2 grammar in competition with
four other grammars, is a case in point. This assumption seems
compatibie with the fact that most (but not all} parameters are
acquired fairly early, which would not be possible if the relative
compatibilities among grammars were very high.
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Furthermore, we believe that it is reasonable to assume that the
badness of a grammar is in general correlated with how ‘far away’
it is from the target grammar, where distance can be measured by
how many parameter values they differ: the Hamming distance.
In particular, we assume that as grammars get further and further
away, their fitness values deteriorate rapidly. It is true that the
change of some parameter may induce radical changes on the
overall grammar obtained, e.g. [¥Wh], scrambling (though some
of these parameters may be independent, and thus free of para-
meter interference). Hence, what we assume is only a statistical
tendency: it is possible that a grammar closer to the target {in
terms of the Hamming distance) is worse than one that is further
away, but it is unlikely.

Specifically, we assume that the penalty probabilities of the
competing grammars follow a standard Gaussian distribution:

Xt

(31) dxy=1-e 3¢, whereo=1/3

To choose penalty probabilities, we first divide the interval {0,1)
into n equal segments, where # is the number of parameters. A
grammar G, with Hamming distance h is expected to fall in the
hth interval. However, to simulate the effect that grammars
further from the target are generally (but not always) worse than
the closer ones, we assume that G, falls in the hth region with
probability s, in the h % 15t regions with probability s% in the & &
and regions with probability s3, etc. This is our assumption of
exponential decay of grammar fitness with respect to its
Hamming distance. Thus, a grammar farther away can be still be
compatible with many sentences from the target grammar, but
the likelihood of it being so vanishes very quickly. Similarly, a
grammar that differs from the target by few paprameters can also
be fairly bad. But overall, further away grammars are on average
worse than those that are closer to the target.

To verify our assumptions of penalty probability distributions,
we consider a very small case, forn =3 with three parameters, in
Gibson & Wexler (1994): Spec-Head, Comp-Head, and V2. And



48 A Variational Model

even here we will make simplified assumptions; see Appendix A
for details. First, we only consider the matrix clauses, as in Gibson
& Wexler (1994). Second, some essential distributional statistics
are based on English and Germanic languages, and then extrapo-
lated (not unreasonably, we believe) to other grammars.
Averaging over the pairwise penalty probabilities of eight gram-
mars, we have: '

{32) a. The average penalty probability for. grammars one parameter away

© s 0571312,
b. The average penalty probability for grammars two parameters away

is 0.687908.
c. The average penalty probability for grammars three parameters
away is 0.727075.

This is clearly consistent with our assumption about fitness distzi-
bution. Penalty probability in general correlates with the
Hamming distance from the target. The pairwise penalty proba-
bilities (Table 2.3 in Appendix A) are also consistent with our
assumption of distance-related exponential decay.

2.4.5 Learning rates and random walks

If one runs the NPL on the distribution of penalty probabilities as
in (31), a number of problems arise, all having to do with the
choice of the learning parameter, ¥, which controls the rapidity
with which the learner adjusts the parameters. First, if y is too
small—the learner modifies parameter weights very slightly upon
success/failure—the learner takes an incredibly long time to
converge. And second, if ¥ is 100 big, the learner will modify the
parameter weights very abruptly, resulting in a ‘jumpy’ learning
curve, not so unlike the original triggering model rejected on the
ground of developmental incompatibility (section 2.1.2).

It is not hard to understand why this may be the case. Consider
the current parameter weight vector P = (p,, p, ... p,J), and the
target values are T, which is an n-ary vector of 0s and 15. When P
is far from T, e.g. P = (0.5, 0.5, . . ., 0.5), the learner has no idea
what T may be. As P gets closer to T, the learner will be able to
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analyze incoming sentences more often. Thus, the learner may
have increasingly higher confidence in P, which now works better
and better, It then seems reasonable to assume that the learner
ought to be more conservative when P is far from the target, but
more assured when P gets close. _

There are a number of ways of implementing this intuition.
One may assume that the gradual increase in ¥ is a matter of
biolegical maturation. There are also many algorithms in
computer science and machine learning that formaily—and
computationally expensively—modify the learning rate with
respect to the confidence interval. But these approaches will
alter the mathematical properties of the Ly o model {22), which
requires a fixed learning rate. Furthermore, they deviate from
the guidelines of psychological plausibility and explanatory
continuity that acquisition models are advised to follow
{Chapter 1). ,

An alternative is suggested by Morgan Sonderegger (personal
communication). It is based on two observations. First, note that
having a high ¥ is equivalent to having a fixed y and using it often.
Second, the overall goodness of P can be related to how often P
successfully analyzes incoming sentences. This leads to a very
simple measure of how close P is to the target, by introducing a
small batch counter b, which is initialized to o0, and a batch bound
B, a small positive integer (usually between 2 and 5, in practice).
Formally,

(33) The Naive Parameter Learner with Batch {NPL+B)
a. For an input sentence s, select a grammar G based on P following the
procedure in (27)
b. » G- sthenb=b+1
v IfGp s thenb=b-1
c. * Ifb= B, reward Gandreset b= o,
If b= —B, punish G and reset b= o,
d. Goto {33a).

Note that the use of ‘batch’ in NPL+B (33) is very different from
the standard one. Usually, ‘batch’ refers to a memory that stores a
number of data points before processing them. In NPL+B, b is
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simply a counter that tracks the success or failure of sentence analy-
sis, without recording what sentences have been presented or what
grammars selected. The cost of additional memory load is trivial.
Yet the effect of this batch is precisely what we wanted: it slows
down the learning rate when P is bad, and speeds it up when P
gets better. To see this, consider that P is very close to T. Now
almost every sentence is compatible with the grammars given by

P, because most of the non-target grammars now have a very low

probability of being selected. Then, almost every B sentences will
push the batch counter b to its bound (B). Weights will be
updated very frequently, driving P to T ever more rapidly. By
contrast, if P is quite far from T, then it generally takes a longer
time for b to reach its bound-—reward and punishment are then
less frequent, and thus slow down learning.

This batch process can be understood precisely by considering
the problem of the Gambler’s Ruin. A gambler has n dollars to
start the game, Every bet he makes, there is a probability p of
making a dollar, and a probability g = 1 — p of losing a dollar. The
gambler wins if he ends up with 2z dollars, and is ruined if he is
down to 0. Since every gamble is independent of all others, the
gambler’s fortune takes a random walk. It is not difficult to
show-the interested reader may consult any textbook on
stochastic processes—that the probability of the gambler winning
(i.e. getting 2# dollars), w, is:

{qip)' -1
{q/p)zn -

(34) w=

Our batch counter b does exactly the same thing. It gains 1
when P yields a succesful grammar, and loses 1 when P yields a
failing grammar. b wins if it reaches B, and loses if it reaches -B.
Let p be the probability of P yielding a successful grammar.®

2 Precisely, p = LPr(P = ;) (1 — ¢}, where G; is a gramumar that can be generated by
P (ther? fare 2" such grammars), where 1 is the number of parameters, Pr(P = G} is the
p;sgabdxry that P generates the grammar G, (s¢e (27)), and ¢; is the penalty probability
of G,
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Then wy, the probability of b reaching the batch bound B is
(@/p)¥ -1
(q/p)ZB -1

Clearly, as p gets bigger, wp gets larger, and as B increases, wy gets
larger still. Fig. 2.3 shows w(B, p) as a function of Band p. B=1
means that there is no batch: the learning parameter would be
uniform throughout learning. '

The assumptions of the normal distribution of grammar
fitness, the exponential decay of fitness with respect to the
Hamming distance, and the use of a small batch counter together
give rise to a satisfactory learner, the NPL+B model.” A typical
result from a simulation of learning a ten-parameter grammar is
given in Fig. 2.4.

The learning curve is generally smooth, with no abrupt
changes. And the learner converges in a reasonable amount of
time. About 600,000 sentences were needed for converging on ten
interacting parameters.

It must be conceded that the formal sufficiency condition of
the NPL model is only tentatively established. Future research lies
in two directions. First, and obviously, much more work is needed
to establish whether the assumptions of Gaussian distribution
and exponential decay are accurate. Second, one may {manually)
determine how many parameters are in fact independent, and
thus do not lead to parameter interference.*

The most important consequence of the NLP model, if vindi-
cated, lies in the dramatic reduction of computational cost: the
memory load reduced from storing 2" grammar weights to 7
parameter weights. This makes the variational model psychologi-
cally plausible, and in turn gives a computational argument for

the conception of UG as a parametric space.

{35) wB,p)=

3 A copy of the NPL+B learner can be obtained from the author.

4 §f abundant, then it is good news for the STL model {Fador 1998, Sakas & Fedor
3001). Presumably, the Jearner can focus on parameters that are not independent: 3
smatler space means smaller computational cost for the STL parser.
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Learning in a parametric space gives rise t¢ ‘hybrid’ grammars.
Since the successful acquisition of a grammar is accomplished
only when all parameters are set correctly, children may go
through an extended period of time in which some parameters
are already in place while others are still fluctuating. For example,
an English child may have learned that his langnage moves Wh
words overtly, but has not conclusively learned that it also oblig-
atorily uses overt subjects. Now what the child possesses are
partial fragments of grammars that may not correspond to any

attested adult language-—something that is, say, English-like in
one respect but Chinese-like in another. And it is precisely these
hybrid languages that confirms the reality of grammar coexis-
tence and competition. A number of such casesin chﬂd languages
will be documented in Chapter 4.

2.5 Related approaches

The idea of language acquisition as grammar competition has
occasionally surfaced in the literature, although it has never been
pursued systematically or directly related to quantitative data in
language development.

To the best of our knowledge, Jakobson (1941) was the first to

 interpret ‘errors’ in child phonology as possible phonological forms

in non-target adult languages. This position was echoed in Stampe
(1979), and seems to be accepted by at least some researchers in
phonological acquisition (Macken 1995). Recent studies on infants’

~gradual loss of universal ability for phonetic discrimination {(Kuhl

et al. 1992; cf. de Boysson-Bardies 1999) seem fo suggest that the
variational model, in which the hypothesis space goes from ‘more’

- 10 less’ throngh competition, may hint at a general process that also

governs the development of phonetic perception.

Since the advent of the P&P framework, some linguists have
claimed that syntactic acquisition selects a grammar out of all possi-
ble human grammars (Piattelli-Palmarini 1089, Lightfoot 1901), but
nothing has been formalized. That children may have simultaneous
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access to muitiple hypotheses has been suggested by Berwick &
Weinberg {1984} and Pinker (1984), among others. The possibility of
associating grammars with weights has been raised by Valian (1990),
Weinberg (1990), and Bloom (1993), either for learnability consider-
ations or to explain the gradual developmental patterns in child
language. These authors, however, opted for different solutions to
the problems under study.

Recently, Roeper (2000; cf. Yang 2000} has independently -

proposed that child language be explained as a combination of
multiple grammars simultaneously available to the learner. Roeper
further suggests that in the selection of competing grammars, the
learner follows some principles of economy akin to those in the
Minimalist Program {Chomsky 1995b): grammars with less
complex structural representations are preferred.® Roeper gives
evidence for the view of multiple grammars. For instance, English

children who alternate between I go, using a nominative case

subject, and me go, using a default (accusative) case, can be viewed
as using two grammars with different case/agreement systems,
both of which are attested in human languages.

The genetic algorithm (GA) model of Clark (1992) is most
similar to the present model. The GA model represents grammars
as parameter vectors, which undergo reproduction via ‘crossover,
i.e. parts of two parental parameter vectors are swapped and
combined.?® A mutation process is also assumed which, with
some probability, randomly flips bits in the grammar vector,
Candidate grammars are evaluated against input data; hence,
measure of fitness is defined, which is subsequently translated
into differential reproduction.

* The present mode} is presented in the most general way: all grammars are there 1o
begin with, 2nd input-grammar compatibility is the only criterion for
rewarding/punishing gramumars. It can incorporate other possibilities, including the
economy condition suggested by Roeper, For instance, one can build in some appro-
priate prior bias in grammar evalnation—analyzability of G - s in {22)—that goes
against complex grammars. However, these additional biases must be argued for
empirically.

 ‘This operation seems to require some empirical justification.
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Both the GA model and the variational model are explicitly
built on the idea of language acquisition as grammar competi-
tion; and in both models, grammars are selected for or against on
the basis of their compatibility with input data. There are,
however, a few important differences. One major difference lies in
the evaluation of grammar fitness. In the present model, the
fitness of a grammar is defined as its penalty probability, an
extensional notion that is only used to described the dynamics of
learning. It is not accessed by the learner, but can be measured
from text corpora by the linguist. In the GA model, the learner
first computes the degree of parsability for all grammars over a
large sample of sentences. The parsability measures are then
explicitly used to determine the differential reproduction that
leads to the next generation of grammars. The computational cost
associated with fitness evaluation is too large to be plausible. The
variational model developed here sidesteps these problems by
making use of probabilities/weights to capture the cumulative
effects of discriminating linguistic evidence.

In the following chapters, we will pursue the condition of
developmental compatibility and present a diverse array of
evidence to support the variational model.

Appendix A: Fitness distribution in a three-
parameter space

Gibson & Wexler (1994: table 3) considered the variations of degree-o
sentences within three parameters: Spec-Head, Comp-Head, and
V2. The strings are composed of Subject, Verb, Object, Double
Objects, Auxiliary, and Adverb (which broadly refers to adjuncts or
topics that quite freely appear in the initial position of a sentence).
For simplicity, we do not consider double objects. The grammars
and the patterns they can generate are given in Table2.2.

A principled way to estimate the probability of a string w " =
W, w, ... w, is to compute its joint probability by the use of the
Chain Rule:
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TABLE 2.2, A space of three parameters, or eight grammars, and the string patterns .

they aliow

fanguage Spec-Head  Comp-Head Va degree-o sentences

VOS-Vz 1 3 0 VS VOS AVS AVOS
XVS XVOS XAVOS
VOS+V2 1 1 1 SV SVO OVS 8V SAVO OAVS
“XVS XVOS XAVS XAVOS
SVO-V2 o 1 o SV SVO SAV $aVO
XSV XSVO XSAV XSAVO
SVO+V2 o 1 1 SV SVO OVS SAV SAVO OASY
‘ VS XVSO XASY XASVO
OVS-Va 1 S o VS OVS VAS OVAS
XV§ XOVS XVAS XOVAS
OVS+Va 1 o 1 SV OVS SVO SAV SAOV OAVS
XVS XVOS XAVS XAOQVS
SOV-Va [ 0 Q SV SOV SVA SOVA
XSOV XSVA XSOVA
SOV+V2 o 0 1 SV SVO OVS SAV SAOV OASV
' XVS XVS0 XASV XASOV

pw,”) = U )pCo )l w?) . plow, ) = I (i)

where the conditional probabilities can be estimated individu-
ally. For example, if w, = §, w, = V, and w, = O, then p(§V0) =
p(S)p(ViS)p(O|SV). It is easy to estimate p(S): p(S) =1 for
obligatory subject languages, and p(S) < 1 for subject drop
languages. Presumably p(V]S) = 1: every sentence has a verb
(inciuding auxiliary verbs). And p(O|SV) is simply the
frequency of transitive verb uses. When the n gets large, the
conditional probabilities get complicated, as substrings of w, ..
.w, are dependent. However, even with a very modest n, say, 10,
one can get a fairly comprehensive coverage of sentential
patterns (Kohl 1699). And again there is independence to be
exploited; for example, verb-to-tense raising parameter is
conditioned only upon the presence of a negation or adverb,
and nothing else.

The crucial assumption we make is that there are similarities in
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the distributions of w;s across languages, no matter how these
languages put them together. It does not seem unreascnable 1o
assume, say, that the frequencies of transitive verbs are more or less
uniform across languages, because transitive verbs are used in
certain life contexts, which perhaps do not vary greatly across
languages. Practically, such assumptions are necessary if there is
any hope of estimating the distribution of sentences in many
grammars, without reliable parsers or comprehensive corpora.
Furthermore, some grammars, i.e. parameter settings, may not be
attested in the world.

Given these assumptions, let us see how we may estimate the
string distributions for eight grammars in Table 2.2, extrapolat-
ing from the grammars for which we do have some statistical
results. For the English grammar (SVO-Vz)}, we estimate, using
sources like the CHILDES corpus, that about 10% of declarative
sentences have an sentence-initial XP; thus 90% of the proba-
bility mass will be distributed among SV, SVO, SAV, SAVQ.
Roughly 50% of all sentences contain an auxiliary, and 50% of
verbs are transitives. Assuming that the selection of Auxiliary
and Verb is independent, and that the selection of the XP
adjunct is independent of the rest of the sentence. We then
obtain:

(36) a. P(SV)=P{SVO) = P(SAV)} = P(SAVO) = 9/q40
b. P(XSV} = P(XSVO) = P(SAV) = P(XSAVO) =1/40

{36) will be carried over to the other three non-V2 grammars, and
assigned 1o their respective canonical word orders.

For the four V2 grammars, we assume that (36) will carry over
to the canonical patterns due to the Spec-Head and Comp-Head
parameters. In addition, we must consider the effect of Vz: raising
S, O, or X to the sentence-initial position. It is known from
{Lightfoot 1997: 265) as well as from our own analysis of a2 Dutch
adult-to-child corpus, that in V2 languages, S occupies the initial
position 70% of time, X, 28%, and O, 2%. These probability
masses (0.7, 0.28, and 6.02) will be distributed among the canon-
ical patterns.
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Putting these together, we may compute the penalty probabil-
ity ¢; of grammar G, relative to grammar Gj:

= ZPGIG, -+ 5)
Gj'--?’ s

The pairwise ¢ are given in Table 2.3.

TABLE 2.3. Relative penalty probabilities of the eight grammars

1 Gio Gy Giop G G G,y G Gy
Gl - 0.790 1.000 0.930 0.750 0.860 0.800 0.930
Gy, 0.906 — 0.100 0.220 ©.750 0.245 0.625 0.385
qu 0.959 0.300 - 0.300 1000 0.475 G.600 0.475
G, 0.966 0220 0.100 - 0.750 0.395 0.625 0.245
G,, o742z 0520 1.600 0.520 - 0.920 0.800 0.920
G, 0.933 0.245 0325 ©.395 0.750 - 0.625 0.220
Gppo 0999 0.825 0.750 0.825 1.000 0.825 - 0.825
G,, 0967 0395 0325 0.245 0.750 0.200 0.623 -

Currently, we are extending these methods to grammars in a
larger parametric space, based on the work of Kohl {1999).

Rules over Words

Fuck these irregular verbs.
Quang Phuc Dong, English Sentences without
Overt Grammatical Subject {1971), p. 4

The acquisition of English past tense has generated much interest
and controversy in cognitive science, often pitched as a clash
between generative linguistics and connectionism (Rumelhart &
McClelland 1986), or even between rationalism and empiricism
(Pinker 1999). This is irregular: the problem of past tense, partic-
ularly in English, notorious for its impoverished phonology, is a
marginal problem in linguistics, and placing it at the center of
attention does no justice to the intricacy of the study of language;
see e.g. Halle (2000}, Yang {2000), and Embick & Marantz (in
press). :

Yet this is not to say the problem of English past tense is trivial
or uninteresting. As we shall see, despite the enthusiasm and
efforts on both sides of the debate, there remain many important
patterns in the published sources still unknown and unexplained.

‘We show that the variational learning model, instantiated here as

competition among phonological rules (rather than
grammars/parameters, as in the case of syntactic acquisition},
provides a new understanding of how phonology is organized
and learned.

3.1 Background

Our problem primarily concerns three systematic patterns in
children’s acquisition of past tense. First, it has been known since





