
Chapter 3

Relations between Variables

In a simple perceptron, patterns are recognized before “relations”; indeed, ab-
stract relations, such as “A above B” or “the triangle is inside the circle” are
never abstracted as such, but can only be acquired by means of a sort of exhaus-
tive rote-learning procedure, in which every case in which the relation holds is
taught to the perceptron individually.
—Rosenblatt (1962, p. 73)

3.1 The Relation between Multilayer Perceptron Models and Rules: Refining
the Question

Computer programs are in large part specified as sets of operations over
variables. For example, the cost of a set of widgets that a customer has
ordered might be calculated by multiplying the contents of a variable
that represents the cost per widget times the contents of a variable that
represents the number of widgets: total_cost = item_cost * num-
ber_ordered.

Does the mind make use of something analogous? Does it have a way
of representing variables and a way of representing relations between
variables? Proponents of symbol-manipulation assume that the answer
is yes—that we make use of open-ended schemas such as “form a pro-
gressive of any verb by adding -ing to its stem” (such as walk-walking).
Because such schemas are much like algebraic equations (prog = stem +
ing), I refer to them as relations between variables or algebraic rules.

Although it seems clear enough that we can manipulate algebraic
rules in “serial, deliberate reasoning”, not everybody agrees that such
abstract relationships between variables play an important role in other
aspects of language and cognition. For example, as mentioned earlier,
Rumelhart and McClelland’s (1986a) two-layer perceptron was an at-
tempt to explain how children might acquire the past tense of English
without using anything like an explicit rule.1

What I want to do here is to clarify the relationship between multilayer
perceptrons and devices that perform operations over variables. As far



as I can tell this relationship has never been clearly specified (definitely
not in my own earlier writings). The relationship between multilayer
perceptrons and devices that compute operations over variables is much
more subtle than has been realized. A better understanding of that re-
lationship will help clarify whether the mind does in fact make use of
operations over variables and also clarify how such operations can be
implemented in a neural substrate.

To make the strongest possible case that the mind does in fact imple-
ment operations over variables, I focus on what I call universally quanti-
fied one-to-one mappings (UQOTOM). The terms universally quantified
and one-to-one come from logic and mathematics. A function is univer-
sally quantified when it applies to all instances in its domain. Such a func-
tion might be specified as, say, “For all x such that x is an integer” or “For
all x such that x is a verb stem.” A function is one-to-one if each output
maps onto a single input in its domain. For example, in the function
f(x) = x, the output 6 corresponds to the input 6 (and no other); the out-
put 3,252 corresponds to the input 3,252 (and no other); and so forth. In
the function f(x) = 2x, the output 6 corresponds to the input 3 (and no
other), and so on. (One example of a function that is not one-to-one is the
many-to-one function that equals 1 if x is odd, 0 if x is even.)

Two particularly important functions that are both universally quan-
tified and one-to-one are identity (f (x) = x, comparable to the “copy” op-
eration in a computer’s “machine language”) and concatention (f(x, y) = xy,
such as past = stem concatenated with -ed).2 In what follows, I frequently
use the example of identity, but identity is just one among many possible
UQOTOM.

I do not mean to suggest that UQOTOM are the only mappings
people compute. But UQOTOM are especially important to the argu-
ments that follow because they are functions in which every new in-
put has a new output. Because free generalization of UQOTOM would
preclude memorization, evidence that people (or other organisms) can
freely generalize UQOTOM would be particularly strong evidence in
support of the thesis that people (or other organisms) can perform op-
erations over variables. (A UQOTOM is not the only kind of mental op-
eration that might reasonably be called an operation over variables.
There may be other kinds of operations over variables as well, such as
one that determines whether a given number is odd or even. But because
it is harder to be certain about the mechanisms involved in those cases,
I leave them open.)

3.1.1 Can People Generalize UQOTOM?
There is ample evidence, I think, that people can generalize universally
quantified one-to-one mappings. To illustrate this, I start with a very
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artificial example. Imagine that you are trained on the input and output
data given in table 3.1. If you are like other people whom I have asked,
you would guess that in the test item the output that corresponds to in-
put item [1111] is [1111]. But that is not the only inference that you could
draw. For example, in the training data, the rightmost column is always
0: there is no direct evidence that the rightmost column could ever be a
1. So you might decide that the output that corresponds to test item
[1111] is [1110]. That inference, too, would be perfectly consistent with
the data, yet few if any people would make it. (We see later that some
networks do.) One way of describing the inference that people tend to
draw is to say that they are generalizing a one-to-one function, such as
identity or sameness, universally.

More natural examples can readily be found. For instance, we can
form the progressive of any English verb stem—even an unusual-
sounding one—by concatenating it with the suffix -ing, hence walk-
walking, jump-jumping, and, in describing what Yeltsin might have done
to Gorbachev, outgorbachev-outgorbacheving. Similarly, (modulo a set of
exceptions) we can apply the -ed past-tense formation process equally
freely, with wug-wugged (Berko, 1958) and outgorbachev-outgorbacheved
(Marcus, Brinkmann, Clahsen, Wiese & Pinker, 1995; Prasada &
Pinker, 1993).

Our processes of sentence formation seem equally flexible and freely
generalizable to new cases. For example, we can form a sentence com-
bining any noun phrase (say, the man who climbed up a hill) with any verb
phrase (say, came down the boulevard in chains).3 Likewise, our intuitive
theories (Carey, 1985; Gopnik & Wellman, 1994; Keil, 1989) seem to con-
sist at least in part of bits of knowledge about the world that can be freely
generalized. For example, part of our knowledge about biology is that
(other things being equal) when animals bear offspring, the babies are
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Table 3.1
Input and output data.

Training Item

Input Output

1010 1010
0100 0100
1110 1110
0000 0000

Test Item

1111 ?



of the same species as their parents (Asplin & Marcus, 1999; Marcus,
1998b). This bit of knowledge can be freely generalized, allowing us, for
instance, to infer that the gerenuk (a bovid found in Eastern Africa) gives
birth to gerenuks.

Another straightforward instance of a UQOTOM is reduplication.
Reduplication, or immediate repetition, is found in pluralization (for
example, in Indonesian the plural of buku (“book”) is buku-buku) and
even in syntax, as Ghomeshi, Jackendoff, Rosen, and Russell (1999) have
recently pointed out, with examples such as, “Are you just shopping, or
are you shopping-shopping?” meaning, roughly, “Are you shopping
casually or seriously?” (Dear reader, are you just reading this, or are you
reading-reading it?) The “opposite” of reduplication (also a UQOTOM),
so to speak, is a process that allows anything but reduplication. For ex-
ample, a constraint of Hebrew word formation is that adjacent conso-
nants in a root must not be identical; Berent and her colleagues (Berent,
Everett & Shimron, 2000; Berent & Shimron, 1997) have shown that
speakers freely generalize this constraint to novel items.

My own recent research suggests that the ability to freely generalize
patterns like reduplication has roots quite early in development. My
colleagues and I have found that seven-month-old infants can freely
generalize (Marcus, Vijayan, Bandi Rao & Vishton, 1999). In our experi-
ments, infants listened for two minutes to “sentences” from one of two
artificial grammars. For instance, some subjects heard sentences con-
structed from an ABA grammar, such as ga na ga and li ti li, while others
heard sentences constructed from an ABB grammar. After this two-
minute habituation, infants were exposed to test sentences that were
made up entirely of novel words. Half of the test sentences were con-
sistent with the sentences that the infant had heard in the two-minute
habituation; half were not. The point was to test whether infants were
able to extract some sort of abstract structure from the habituation and
to test whether they could freely generalize. To assess this, we measured
how long infants looked at flashing lights that were associated with
speakers playing test sentences. Based on prior work by Saffran, Aslin,
& Newport (1996), we predicted that infants who could distinguish the
two grammars and generalize them to new words would attend longer
during the inconsistent items. For example, infants that were trained on
the ABA grammar should look longer during, say, wo fe fe than wo fe wo.
As predicted, infants looked longer at the inconsistent items, suggesting
that infants were indeed sensitive to the abstract structure of the artifi-
cial grammar on which they were trained. Because the words in the test
sentences and the words in the training sentences were different, our ex-
periments suggest that the infants were able to freely generalize (and
that they could do so without explicit instruction).
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Additional experiments showed that infants were not relying simply
on the presence or absence of immediately reduplicated items: infants
could also distinguish between an AAB grammar and an ABB grammar.
In principle, infants could have made such a distinction based purely on
the last two words, but pilot data that I reported in Marcus (1999) shows
that infants are capable of distinguishing grammars such as AAB versus
BAB that do not differ in the final two words. Still other experiments, by
Gomez and Gerken (1999), point to similar abilities in twelve-month-old
infants.

Although I take the evidence for free generalization to be strong, I am
not claiming that every generalization that we draw is freely generalized
across all potential instances in its domain. For example, some of the
generalizations that we draw in the area of motor control may be far
more restricted. Ghahramani, Wolpert, and Jordan (1996) conducted an
adaptation experiment in which subjects used a computer mouse to
point to computer-generated visual targets. Subjects received feedback,
but only for one or two specific locations; when they pointed outside
these locations, they received no feedback. Unbeknownst to the sub-
jects, the feedback (in the one or two designated locations in which it
was supplied) was secretly altered. This altered feedback caused sub-
jects to alter their pointing behavior, but rather than compensating
equally across the motor space, subjects compensated for the altered
visual feedback most strongly in the locations at which they have re-
ceived feedback. In other words, rather than transferring across the
board, the degree to which subjects transferred declined rapidly as a
function of the distance from the locations on which they were trained.
Rather than learning something that held universally, in this case sub-
jects learned something that seemed to pertain to only a few of its pos-
sible inputs. More broadly speaking, in each domain in which there is
generalization, it is an empirical question whether the generalization is
restricted to items that closely resemble training items or whether the
generalization can be freely extended to all novel items within some
class.

3.1.2 Free Generalization of UQOTOM in Systems That Can Perform
Operations over Variables
To a system that can make use of algebralike operations over variables,
free generalization comes naturally. For example, the information that
we extracted from table 3.1 could be represented as an expression of the
universally quantified, one-to-one identity mapping, f(x) = x. We could
then calculate the output that corresponds to the test item, f(1111) by
substituting the instance 1111 into the variable x on the right-hand side of
the equation.
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Defined by such a substitution process, an operation over a variable is
indifferent as to whether the instantiation of that variable is familiar or
unfamiliar.4 We do not care which examples of that variable we have
seen before; the operation over variables can be freely generalized to any
instantiation.

Looking something up in a table does not count as applying an ab-
stract relationship between variables. For example, if we have a table
that tells us that entry 1 corresponds to Adam, 2 to Eve, 3 to Cain, and 4
to Abel, there is no interesting sense in which the computation being
performed is a systematic, unbounded operation over variables. Alge-
braic rules are not finite tables of memorized facts or relationships be-
tween specific instances but open-ended relationships that can be freely
generalized to all elements within some class.

3.1.3 Implementing Operations over Variables in a Physical System
How might a system that can perform operations over variables be im-
plemented in a physical system? One simple way to do this is to use a set
of buckets. One bucket represents the variable x, and another bucket
represents the variable y. The instantiation of a given bucket is indicated
by the bucket’s contents. To set x equal to the value of 0.5, we fill the
bucket representing the variable x half way. To copy the contents of vari-
able x into variable y, we literally pour the contents of x into y.

A given variable could also be represented by using more than one
bucket. For example, if we want variable x to represent varying amounts
of pocket change, we could use one bucket to represent the number of
quarters, another to represent the number of dimes, another to represent
the number of nickels, and another to represent the number of pennies.
The total amount of currency thus is represented by the four-bucket en-
semble. Just as we can define simple universally quantified one-to-one
operations such as copy in the single-bucket case, we can define simple
universally quantified one-to-one operations in the multiple bucket
case. The key to doing this is that we must do the same thing in parallel
for each individual bucket. To copy the contents of variable x (represented
by four buckets) into the contents of variable y (represented by four
buckets), we must copy the contents of the x bucket that represents the
number of quarters into the y bucket that represents the number of quar-
ters, and so forth, for the dimes, nickels, and pennies—a strategy that
might be described by the Latin phrase mutatis mutandis, which is
loosely translated as “repeat as necessary, changing what needs to be
changed.”

This basic insight of mutatis mutandis is at the core of how modern
digital computers implement operations over variables. Much as in our
multiple bucket example, computers represent numerical quantities
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and other kinds of information using sets of binary registers (sometimes
known as bits). These binary registers can be thought of as analogous to
buckets that are always either full or empty. Operations are defined in
parallel over these sets of binary bits. When a programmer issues a com-
mand to copy the contents of variable x into variable y, the computer
copies in parallel each of the bits that represents variable x into the cor-
responding bits that represent variable y, as depicted in figure 3.1.

3.2 Multilayer Perceptrons and Operations over Variables

The distinction between encoding a variable with a single bucket and
encoding a variable with a set of buckets is helpful because the relation-
ship between multilayer perceptrons and operations over variables can
be understood in similar terms. In essence, the key question is whether
a given input variable in a particular network is encoded using one node
or a set of nodes.

For example, consider the encoding schemes used by various models
of children’s understanding of so-called balance-beam problems. In
these problems, a child must predict which side of a balance beam will
go down. In these simulations, the input to a model consists of four
variables, number-of-weights-on-the-left-side, distance-of-left-weights-
from-fulcrum, number-of-weights-on-the-right-side, and distance-of-
right-weights-from-fulcrum. As figure 3.2 illustrates, one option is to
allocate one node to each of these variables, with any given variable tak-
ing values such as 1.0, 2.0, or 3.0 (Shultz, Mareschal & Schmidt, 1994).
Another option is to use a set of nodes for each variable, with each par-
ticular node representing some particular number of weights (McClel-
land, 1989).

This difference—in whether a particular variable is encoded by one
node or by many nodes—is not the same as the difference between
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Figure 3.1
A simple circuit for implementing a “copy” operation in a computer that represents vari-
ables (here, x and y) using sets of bits.



localist and distributed representations. While all models that use dis-
tributed representations allocate more than one variable per node, it is
not the case that all localist models allocate a single node per variable. In
fact, most localist models allocate more than one node per variable. Con-
sider Elman’s sentence-prediction model. Here, the input to the model
is a single variable that we might think of as current word. Although
any given instantiation of that variable (say, cat) will activate only a
single node, every input node can potentially indicate an instantiation of
the variable current word. For example, the node for dog might not be
active at this moment, but it might be active during the presentation of
another sentence. The sentence-prediction model is thus an example of
a localist model that allocates multiple nodes to a single input variable.
Again, what is relevant here is not the sheer number of input units
but rather the number of input units allocated to representing each input
variable.
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Two variables, each represented by a single input node

Two variables, each represented by multiple input nodes

Number
of weights 

Distance
from fulcrum

Number of weights

1 32 4

Distance from fulcrum

1 32 4

Figure 3.2
The balance-beam task: two different ways of encoding how many weights are on the left
and how far those weights are from the fulcrum on the right. Top panel: An input encod-
ing scheme in which a single node is devoted to the encoding of each variable. Bottom
panel: An input encoding scheme in which a set of nodes is devoted to the encoding of
each variable. In the top panel, both the number of weights and the distance from the ful-
crum are encoded locally. In the bottom panel, both the number of weights and the dis-
tance from the fulcrum are encoded in distributed fashion, using banks of nodes. If there
were three weights on the left side, the coding scheme depicted in the top panel would ac-
tivate the number-of-weights scheme to a level of 3.0, while the coding scheme depicted in
the bottom panel would activate to a level of 1.0 the 3 node in the bank of weights repre-
senting the number of weights. Hidden units and output units are not shown.



It is also important to draw a distinction between the contrast I am
drawing and another often overlapping contrast between analog and
binary encoding schemes. As it happens, many models that allocate just
one node per variable rely on continuously varying input nodes rather
than binary input nodes (analog encoding), whereas models that use mul-
tiple nodes typically use binary encoding schemes. But it is possible to
have an input variable that is represented by a single node that takes on
discrete values or by a set of nodes that take on continuous activation
values. What is important for present purposes is not whether a node is
analog or binary but rather whether a given variable is represented by a
single node or many.

3.2.1 Models That Allocate One Node to Each Variable
With this distinction—between representational schemes that allocate
one node per variable and representational schemes that allocate more
than one node per variable—firmly in mind (and clearly distinguished
from the separate question of localist versus distributed encoding), we
are now ready to consider the relation between multilayer perceptrons
and systems that represent and generalize operations over variables.

As I warned in chapter 1, my conclusions may not be what you expect.
I argue neither that multilayer perceptrons cannot represent abstract
relationships between variables nor that they must represent abstract
relationships between variables. Simple claims like “Multilayer percep-
trons cannot represent rules” or “Multilayer perceptrons always repre-
sent ‘concealed’ rules” simply are not correct. The real situation is more
complex—in part because it depends on the nature of a given model’s
input representations.

Models that allocate a single node to each input variable behave very
differently from models that allocate more than one node to each input
variable. Models that allocate a single node to each input variable are
(with some caveats) simpler than models that allocate multiple nodes to
each variable. One-node-per-variable models, it turns out, can and in-
deed (the caveats in note 5 notwithstanding) must represent universally
quantified one-to-one mappings.5 For example, the model illustrated in
figure 3.3 can represent—and freely generalize—the identity function if
it uses a connection weight of 1.0 (and linear activation function with a
slope of one and intercept of zero). With the same activation function but
a connection weight of 2.0, the model can represent and freely general-
ize the function f(x) = 2x, or any other function of the form f(x) = mx + b—
each of which is a UQOTOM.

From the fact that (caveats aside) such models can represent only
UQOTOM and no other functions, it follows directly that all that a learn-
ing algorithm can do is choose between one universally-quantified one-
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to-one mapping and another, such as f(x) = x versus f(x) = 1.5x, f(x) = 2x,
and so on. Such models cannot learn arbitrary mappings. (For example,
they cannot learn to map an input number that specifies the alphabeti-
cal order of a person in a phonebook to an output that specifies that per-
son’s telephone number.) As such they provide a candidate hypothesis
for how operations over variables can be implemented in a neural sub-
strate and not for a mental architecture that eliminates the representation
of abstract relationships between variables.

3.2.2 Models That Allocate More Than One Node per Variable
Models that allocate more than one node per variable too, can represent
universally quantified one-to-one mappings (see, for example, the left
panel of figure 3.4), but they do not have to (see the right panel of figure
3.4). When such a network represents identity or some other UQOTOM,
it represents an abstract relationship between variables—which is to say
that such a network implements an algebraic rule.

Advocates of multilayer perceptrons might resist the claim that I am
making here, for I am claiming that some multilayer perceptrons (such
as the one in the left panel) implement—rather than eliminate—alge-
braic rules. In hindsight, though, my claim should seem obvious, per-
haps even banal. After all, a network that implements the identity (that
is, “copy”) function using a set of connections such as in the left panel
has essentially the same wiring diagram as a digital logic chip that im-
plements a copy function.

My remarks so far have been purely about representation, not about
generalization. To sum them up, models that allocate a single node to
each variable have (putting aside the worries about nonlinear activation
functions and arbitrary representational schemes) no choice but to rep-
resent abstract relationships between variables, whereas models that
allocate multiple nodes to each variable sometimes represent abstract
relationships between variables and sometimes do not: what they rep-
resent is a function of what their connection weights are. In multiple-
nodes-per-variable multilayer perceptrons, some connection weights
represent UQOTOM, others represent many-to-one mappings, and still
others can represent purely arbitrary mappings.

As such, multilayer perceptrons that allocate more than one node
to each variable are quite flexible. One might ask whether this flexibil-

44 Chapter 3

x y

Figure 3.3
A network that uses one node to represent each variable.



ity suggests that multiple-nodes-per-variable multilayer perceptrons are
the best way of implementing abstract relationships between variables
in a neural-like substrate. What I suggest in the next section is that their
flexibility is both an asset and a liability and that the liability is serious
enough to motivate a search for alternative ways in which abstract rela-
tionships between variables can be implemented in a neural (or neural-
like) substrate.

Learning The flexibility in what multiple-nodes-per-variable models
can represent leads to a flexibility in what they can learn. Multiple-
nodes-per-variable models can learn UQOTOMs, and they can learn
arbitrary mappings. But what they learn depends on the nature of the
learning algorithm. Back-propagation—the learning algorithm most
commonly used—does not allocate special status to UQOTOMs. In-
stead, a many-nodes-per-variable multilayer perceptron that is trained
by back-propagation can learn a UQOTOM—such as identity, multipli-
cation, or concatenation—only if it sees that UQOTOM illustrated with
respect to each possible input and output node.

For example, the data in table 3.1, as mentioned earlier, might be
thought of as illustrating the identity function. But the data do not
exemplify all possible instances of the identity function. Instead, they
illustrate only a systematically restricted subset of the instances of the
identity function: in every training case the rightmost column in the tar-
get output is 1 and is never 0.

If we thought about this in geometric terms, we might call the set of
possible inputs the input space, the set of inputs on which the model is
trained the training set, and the area of the input space in which the train-
ing set is clustered the training space. Inputs with the rightmost col-
umn of 0 (whether or not they are in the training set) are in the training
space, but inputs with the rightmost column of 1 are outside the training
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Figure 3.4
UQOTOM and many-to-one mappings in models that represent a single variable with a
set of nodes. Left panel: A one-to-one mapping from a single input variable to a single out-
put variable. Right panel: A many-to-one mapping from a single input variable to a single
output variable. Only connections with non-zero weights are shown.



space. (If we construe the inputs in table 3.1 as binary numbers, the even
numbers lie inside the training space, and the odd numbers lie outside
the training space.)

Many-nodes-per-variable multilayer perceptrons that are trained by
back-propagation can generalize one-to-one mappings within the train-
ing space, but assuming that the inputs are binary (such as 0 or 1, –1 or
+1, +voiced or –voiced, +cat or –cat, and so on), they cannot generalize
one-to-one mappings outside the training space.6

For example, in a recent series of simulations, I found that if the
simple network illustrated in figure 3.5 is trained only on inputs with a
rightmost digit of 0, it will not generalize identity to inputs with a right-
most digit of 1 (Marcus, 1998c). Instead, whether the rightmost digit is a
1 or a 0, the model always returns an output in which the rightmost digit
is 0. For example, given the input 1111, the model generally returns 1110,
an inference that is mathematically justifiable but plainly different from
what humans typically do.

Put informally, the network has no way to tell that all four columns
should be treated uniformly. People may not always treat the columns
uniformly, but certainly under some conditions they can, and these con-
ditions pose difficulties for the many-nodes-per-variable models that
are trained by the back-propagation learning algorithm.
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Figure 3.5
A multilayer network with distributed input and output representations.
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Training independence A bit more formally, we can say that many-
nodes-per-variable multilayer perceptrons that are trained by back-
propagation cannot generalize one-to-one mappings between nodes.
This is because the learning that results from back-propagation is, in an
important sense, local. As McClelland and Rumelhart (1986, p. 214) put
it, these models “change the connection between one unit and another
based on information that is locally available to [a given] connection.”
This localism has the consequence that if a model is exposed to a simple
UQOTOM relationship (such as identity) for some subset of the inputs
that leaves some nodes untrained, it will not generalize that UQOTOM
function to the remaining nodes.

The fact that a multiple-nodes-per-variable multilayer perceptron
cannot generalize a UQOTOM function to a node that lies outside the
training space follows from the equations that define back-propagation.
The equations lead to two properties that I call input independence and
output independence or, collectively, training independence (Marcus, 1998c).
Input independence is about how the connections that emanate from in-
put nodes are trained. First, when an input node is always off (that is, set
to 0), the connections that emanate from it will never change. This is
because the term in the equation that determines the size of the weight
change for a given connection from input node x into the rest of the net-
work is always multiplied by the activation of input node x; if the acti-
vation of input node x is 0, the connection weight does not change. In
this way, what happens to the connections that emanate from an input
node that is never turned on is independent of what happens to connec-
tions that emanate from other input nodes. (If the input node never
varies but is always set to some value v other than 0, the mathematics be-
comes more complex, but it appears to be true empirically that in such
cases the model does not learn anything about the relation between that
input node and the output, other than to always set the output node to
value v.)

Output independence is about the connections that feed into the out-
put units. The equations that adjust the weights feeding an output unit
j depend on the difference between the observed output for unit j and
the target output for unit j but not on the observed values or target values of
any other unit. Thus the way the network adjusts the weights feeding out-
put node j must be independent of the way the network adjusts the
weights feeding output node k (assuming that nodes j and k are distinct).
This means not that there is never any dependence between output
nodes but that the only source of dependence between them is their com-
mon influence on the hidden nodes, which turns out not to be enough.
At best, the mutual influence of output nodes on input-to-hidden-
layer connections may under some circumstances lead to felicitous
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encodings of the hidden nodes. We might think of such hidden units
as quasi-input nodes. The crucial point is that no matter how felicitous
the choice of quasi-input units may be, the network must always learn
the mapping between these quasi-input nodes and the output nodes.
Since this latter step is done independently, the mutual influence of the
output nodes on input-to-hidden-layer connections is not sufficient
to allow the network to generalize a UQOTOM between nodes.

Training independence leads other standard connectionist learning
algorithms to behave in similar ways. For example, the Hebbian rule
ensures that any weight that comes from an input unit that is set to 0 will
not change, since the weight change is calculated by multiplying the
input unit’s activation by the output unit’s activations times some con-
stant. Again, multiplying by 0 guarantees that no learning will take
place. Likewise, when the Hebbian algorithm adjusts the weights feed-
ing into some output node j, the activations for all nodes k ≠ j are ir-
relevant, and hence multiple-nodes-per-variable perceptrons that are
trained by the Hebbian algorithm do not generalize UQOTOM between
nodes.

Extending a new function to a node that has already been trained Training
independence does not limit just the ability of networks to generalize to
nodes that were never used, but also the ability of networks to general-
ize between what we might call known nodes—nodes in which both fea-
ture values have appeared in the input. For example, consider the model
shown in figure 3.6. I trained this network to do two different things. If
the rightmost node was activated, the model was to copy the remainder
of the input; if the rightmost node was not activated, the model was to
invert the remainder of the input (that is, turn each 1 into a 0 and each 0
into a 1, such as 1110 into 0001).

I trained this network on inversion for all 16 possible inputs and then
trained it on identity just for the numbers in which digit 4 equaled 0.
As before, the network was unable to generalize to 1111, despite hav-
ing had ample experience with the digit 4 input node in the inversion
function. The problem of transferring from node to node is not restricted to
untrained nodes: networks trained with localist algorithms such as back-
propagation never transfer UQOTOM between nodes.

Training independence, mathematics, and modeling Let me stress that there
is no flaw in the training algorithm itself. What these localist learning al-
gorithms do is not a mathematical aberration, but rather an induction
that is perfectly well licensed by the training data. For example, given
the training data, the conditional probability that the rightmost digit
would be a 1 is exactly 0. The model thus extends a conditional proba-
bility in a way that is mathematically sound.

48 Chapter 3



If there were no cases in which organisms could freely generalize on
the basis of limited input, training independence might not be a prob-
lem. In tasks in which subjects cannot freely generalize, a model that
does its training independently may actually be preferred over a model
that can learn only relationships that apply to all instances of a class. A
localist algorithm in which there is training independence is a liability
only if it is used to capture phenomena in which an organism can freely gener-
alize. In cases where organisms cannot freely generalize, it is possible
that localist algorithms may be appropriate.

But in some cases it appears that humans can freely generalize from
restricted data, and in these cases many-nodes-per-variable multilayer
perceptrons that are trained by back-propagation are inappropriate.
This fact is worth pointing out because the literature on connectionist
models of cognitive science is filled with multiple-nodes-per-variable
multilayer perceptron models that are trained by back-propagation, and
many of those models are aimed at accounting for aspects of mental life
in which humans do appear to be able to freely generalize from incom-
plete input data. For example, Hinton’s family-tree model (described in
chapter 2) tried to learn abstract relations like sibling of. It seems quite
clear that humans can freely generalize such relations. A human knows
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that if Dweezil is the sibling of Moon, Moon must be the sibling of
Dweezil. But the symmetry of such relationship is lost on Hinton’s
family-tree model: each new person must be represented by a new
node, each new node is treated independently, and hence the network
does not infer that Moon must be the sibling of Dweezil. (In Hinton’s
discussion of the family-tree model, the problem of generalizing out-
side the training space is not addressed. Hinton’s tests of the model were
always within the training space—tests of whether the model could
infer some fact about a family member about which many facts were
already known. Cases such as the Dweezil-Moon example were never
tested.)

Similarly, Elman’s sentence-prediction model seems to be aimed
squarely at cases in which humans can freely generalize—at accounting
for how we acquire syntactic relationships between categories. To illus-
trate one way in which training independence would undermine the
sentence-prediction model, in Marcus (1998c) I reported a series of sim-
ulations in which I trained the sentence-prediction model on sentences
such as a rose is a rose, a lily is a lily, and a tulip is a tulip. Humans would
predict that the continuation to the sentence fragment a blicket is a 
is blicket, but my simulations showed that Elman’s network (assuming
that each word is represented by a separate node) does not. (Once again,
the issue is not about new nodes per se but about generalizing a UQO-
TOM between nodes. In a follow-up to that experiment I showed that
pretraining the simple recurrent network on sentences such as the bee
sniffs the blicket and the bee sniffs the rose did not help the network infer
that the continuation to a blicket is a is blicket.)

In a reply, Elman (1998) obscured the issues, by showing one way
in which the sentence-prediction network could generalize a function
that was not one-to-one within the training space. But showing that the
sentence-prediction network could generalize a function that was not
one-to-one does not bear on my point that such a network cannot gen-
eralize (outside the training space) functions that are one-to-one. The
bottom line is that humans can freely generalize one-to-one mappings
but that multilayer perceptron models that allocate multiple nodes per
variable and are trained with localist learning algorithms cannot. For
these cases, we must seek alternative models.

3.3 Alternative Ways of Representing Bindings between Variables and
Instances

Cases in which humans can freely generalize UQOTOM on the basis of
restricted data are problematic for multiple-nodes-per-variable multi-
layer perceptrons trained by back-propagation. But this does not mean
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that no model of any sort could capture free generalization from re-
stricted data.

In general, what is required is a system that has five properties. First,
the system must have a way to distinguish variables from instances,
analogous to the way mathematics textbooks set variables in italic type
(x) and constants in bold type (AB). Second, the system must have a way
to represent abstract relationships between variables, analogous to an
equation like y = x + 2. Third, the system must have a way to bind a
particular instance to a given variable, just as the variable x may be
assigned the value 7. Fourth, the system must have a way to apply op-
erations to arbitrary instances of variables—for example, an addition
operation must be able to take any two numbers as input, a copying
operation must be able to copy any input, or a concatenation operation
must be able to combine any two inputs. Finally, the system must have a
way to extract relationships between variables on the basis of training
examples.

3.3.1 Variable Binding Using Nodes and Activation Values in a Multilayer
Perceptron
We have already seen one simple model that meets these five criteria: a
model in which a single input node connects to a single output node
(with a linear activation function). In this model, variables are repre-
sented distinctly from instances: the nodes represent variables, and the
activation values indicate instances. The connection weight indicates
the relation between the variables (for example, it is 1.0 if the output
variable always equals the input variable). Bindings are indicated by the
activation values. The structure of the network guarantees that all in-
stances of a variable will be treated in the same way. The learning algo-
rithm (either back-propagation or the Hebbian algorithm will work) is
constrained such that all it can do is change that single connection
weight; each possible (changed) value of the connection weight simply
indicates a different relationship between variables. Consequently, such
a model can freely generalize the identity relationship on the basis of a
very small number of training examples.

Still, although a one-node-per-variable system can readily represent
functions such as identity or multiplication, such a system cannot so
easily represent many other important one-to-one mappings. For example,
it is not obvious how one would implement an operation that combines
a verb with its suffix or an operation that adjoins one part of a syntactic
tree with another. Because the range of operations that one might repre-
sent seems fairly limited, it is worth considering alternatives.

What about the more complex model in which variables are repre-
sented by sets of nodes? Instances are again represented by activation
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values; the difference is that only some sets of connection weights im-
plement operations that apply uniformly to all possible instances. Taken in
conjunction with a learning algorithm such as back-propagation, this is
not a good thing, for as we saw, UQOTOM are not generalized outside
the training space. But this does not mean that one could not use a dif-
ferent kind of learning algorithm. Goldrick, Hale, Mathis, and Smolen-
sky (1999) are working on developing learning algorithms that relax the
assumption of localism that leads to training dependence. It is too early
to fully evaluate their approach, but it clearly merits further study.
Should they succeed, an important open question will be whether the
resulting learning algorithm is one that provides an alternative to oper-
ations over variables or an implementation thereof.

3.3.2 Conjunctive Coding
In multilayer perceptrons, the current instantiation of a given variable is
indicated by a pattern of activity. There are a number of other possible
ways to indicate the binding between a variable and its current instance.
One possibility is to devote specific nodes to particular combinations of
a variable and an instance. For example, node A might be activated if
and only if the subject of some sentence is John, node B might be acti-
vated if and only if the subject of that sentence is Mary, and node C might
be activated if and only if the object of some sentence is John. This sort of
system provides a way of temporarily binding variables and instances
but is not by itself a way of implementing operations over variables. For
that, some additional mechanisms are required.

It seems likely that conjunctive coding plays some role in our mental
life. For example, experiments with single-cell recordings by Goldman-
Rakic and others (Funashi, Chafee & Goldman-Rakic, 1993) have indi-
cated that certain neurons are most strongly activated when a particular
object appears in a particular position. It does not seem unreasonable to
assume that these neurons conjunctively encode combinations of ob-
jects in particular positions.

But the brain must rely on other techniques for variable binding as
well. Conjunctive codes do not naturally allow for the representation of
binding between a variable and a novel instance. The fact that Dweezil is
the agent of loving can be represented only if there is a node that stands
for agent-of-loving-is-Dweezil. It seems implausible to suppose that all
necessary nodes are prespecified, yet it also seems problematic to think
that there would be a mechanism that could manufacture arbitrary con-
junctive nodes on the fly. Moreover, conjunctive encoding schemes may
require an unrealistically large number of nodes, proportional to the
number of variables times the number of possible instances. (As I show
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in chapter 4, this becomes especially worrisome if the instances can be
complex elements such as the boy on the corner.)

3.3.3 Tensor Products
A more general, more powerful way of doing conjunctive binding is
the tensor product proposed by Smolensky (1990). A tensor product is a
way of representing a binding between a variable and an instance. A
tensor product is not (by itself) a way of representing a relationship be-
tween variables or a way of applying operations to variables. Further
machinery would be required to represent or extend relationships be-
tween variables. I do not discuss such machinery here but instead focus
only on how tensor products represent bindings between variables and
instances.

In the tensor product approach, each possible instance and each pos-
sible variable is represented by a vector. A particular binding between a
particular variable and a particular instance is represented by applying
a process analogous to multiplication. The resulting combination, a ten-
sor product, is a vector of greater dimensionality.

To illustrate how the model might encode the binding between the
variable agent and the instance John, let us suppose that John is repre-
sented by the vector 110 and agent by the vector 011. Figure 3.7 illustrates
the encoding of John on the y-axis and the encoding of agent on the 
x-axis. The resulting tensor product that represents their binding (corre-
sponding to the 3×3 set of nodes in the top right corner of the figure)
would be the two-dimensional vector

0 1 1
0 1 1
0 0 0
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One way in which tensor products differ from the simple conjunctive
scheme (described in the previous section) is in the role of a given node.
In the simple conjunctive scheme, each node is dedicated to the repre-
sentation of a single particular binding (for example, one node is turned
on only if John is the agent, another if Peter is the agent, and so forth). In
contrast, in the tensor product scheme, every node participates in every
binding.

The tensor product scheme has at least two important advantages
over the simple conjunctive scheme. First, it is potentially more efficient.
The simple conjunctive scheme requires i*v nodes, where i is the num-
ber of instances and v is the number of variables. The tensor product
scheme requires a*b nodes, where a is the length of the vector encoding
the instance and b the length of the vector encoding the variable. If there
are, say, 128 possible instances and 4 possible variables, the tensor prod-
uct scheme is considerably more efficient, requiring 7 + 2 + 14 = 23
nodes, 7 nodes to represent the instance, 2 to represent the variable, and
14 to represent any possible combination of the two. The simple con-
junctive scheme requires 128 * 4 = 512 nodes. Second, the tensor product
scheme can more readily cope with the addition of new possible in-
stances. Assuming that the new instance can simply be assigned a new
vector, representing a binding containing that instance is simply a mat-
ter of plugging a new vector into the preexisting tensor product ma-
chinery. Nonetheless, despite these advantages, I suggest in chapter 4
that tensor products are not plausible as an account of how we represent
recursively structured representations.

3.3.4 Registers
A limitation of the binding schemes discussed so far is that none pro-
vides a way of storing a binding. The bindings that are created are all en-
tirely transitory, commonly taken to be constructed as the consequence
of some current input to the system. One also needs a way to encode
more permanently bindings between variables and instances.

One way to do this is to use devices that have two or more stable states.
For example, digital computers often make use of flip-flops—binary or
bistable devices that can be set to either on or off and then maintained in
that state without further input. (Registers need not be bistable; they
need only have more than one stable state. For example, mechanical
cash registers use memory elements with 10 stable states each (0, 1,
2, . . . 9)—each memory element for the number of pennies, one for
the number of tens of pennies, one for the number of dollars, one for
the number of tens of dollars, and so on. If registers are used in the hu-
man brain, they might be bistable, like those in a digital computer, but
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might not be; I am not aware of any evidence that directly bears on this
question.)

Registers are central to digital computers; my suggestion is that regis-
ters are central to human cognition as well. There are several ways in
which stable but rapidly updatable registers could be constructed in a
neural substrate. For example, Trehub (1991) proposed that autaptic
cells—cells that feed back into themselves—could serve effectively as
rapidly updatable bistable devices. This idea has its origins in Hebb’s
(1949) notion of a “cell-assembly.” A related proposal comes from Calvin
(1996), who proposed a set of hexagonal self-excitatory cell assemblies
that could serve as registers.

Along these lines, it should be clear that although multilayer percep-
trons do not directly provide for registers, it is an easy matter to con-
struct bistable registers out of nodes and connections. All that is really
required is a single node that feeds back into itself. As Elman et al. (1996,
p. 235) showed, with the right connection weight, a single node that
feeds back into itself becomes a bistable device. If the input is 0, the out-
put tends to go to 0; if the input is 1.0, the output tends to go to 1.0. If the
input is 0.5, which we can think of as the absence of a write-to-memory
operation, the output tends to remain unchanged. Once the input is
taken away, the model tends to remain stable at one or another attractor
point (0.0 or 1.0). The model then holds stable at the attractor point, just
like a flip-flop. The key here is to use the self-feeding node as a memory
component within a more structured network. Although one can use a
simple node connected to itself as part of a more complex system that
performs operations over variables, standard multilayer perceptrons do
not make a distinction between components for processing and compo-
nents for memory.

Although it is often assumed that knowledge is stored in terms of
changes in between-cell (synaptic) connection weights, it is logically
possible that knowledge is stored within cells. A given neuron could, for
example, store values internally by modulating cell-internal gene ex-
pression. We know, for example, that cells have the sort of memory that
indicates their type (Rensberger, 1996); when a cell divides, its type of
memory is generally inherited by its offspring. These mechanisms, or
other mechanisms such as the reciprocal modulation of ion channels
(Holmes, 1998), could provide an intracellular basis for registers.

Registers, however they are implemented, can provide a basis not
only for variable binding but also, more generally, for the kinds of mem-
ory in which we learn things on a single trial. Such rapidly updatable
memory clearly plays an important role throughout our mental life. A
typical example comes from Jackendoff and Mataric (1997, p. 12):
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Coming to work in the morning, I park my car in parking lot E
instead of parking lot L, where I usually park. At the end of the day,
if I am inattentive, I may head for lot L. But if I quickly think
“Where did I park my car?” I remember, and head correctly for
lot E. . . . Here, despite the fact that an association of my car with
lot L is well trained into me, I remember to go to lot E on the basis
of one occurrence.

Whatever rapidly updatable neural circuitry supports these kinds of
everyday experiences could also be used to support registers that store
instances of variables.7

3.3.5 Temporal Synchrony
Although I personally suspect that (at least some) registers will be de-
fined in terms of physically isolable parts of the brain (cells, circuits, or
subcell assemblies), several other possibilities have been proposed in
the literature. Most prominent among these alternative possibilities is
temporal synchrony (also known as dynamic binding) (Hummel & Bieder-
man, 1992; Hummel & Holyoak, 1993; Konen & von der Malsburg, 1993;
Shastri & Ajjanagadde, 1993), which we can think of as a framework for
representing registers in time rather than in space.

In the temporal synchrony framework, both instances and variables
are represented by nodes. Each of these nodes oscillates on and off over
time. A variable is considered to be bound to its instance if both fire in
the same rhythmic phase. For example, suppose we want to bind (the
instance) Sam to the role (variable) action-of-selling. As sketched in
figure 3.8, nodes for the variable agent-of-selling and the instance
Sam oscillate simultaneously in a rhythmic cycle. (Meanwhile, book
and object-of-selling also resonate together but in a different phase
than Sam and agent-of-selling.)

Temporal synchrony is, by itself, simply a way of representing bind-
ings between variables and instances and is not a way of performing
operations over those instances. Fortunately, it is possible to build mech-
anisms that operate over those bindings. For example, Holyoak and
Hummel (2000) have shown that an analogical reasoning system that
uses temporal synchrony to represent variable bindings can generalize
the identity task described earlier in this chapter. Similarly, Shastri and
his colleagues (Mani & Shastri, 1993; Shastri & Ajjanagadde, 1993) have
shown how temporal synchrony can play a role in rapid inference (and,
as we see later in this chapter, Shastri and Chang, 1999, have shown how
temporal synchrony can play a role in a simulation of the Marcus et al.,
1999, infant results).
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These proposals are motivated by the suggestions of neuroscientists
such as von der Malsburg (1981) and Singer et al. (1997) that the syn-
chronization of the activity of neurons may play an important role in
neural computation. (Not everybody agrees that synchronization plays
an important role; for some skeptical views, see some of the Behavioral
and Brain Science commentaries that appear with Shastri and Ajjana-
gadde, 1993.)

My own view is that temporal synchrony might well play a role in
some aspects of vision, such as grouping of parts of objects, but I have
doubts about whether it plays as important a role in cognition and lan-
guage. One potential limitation to the temporal synchrony framework is
that such a system is likely to be able to keep distinct only a small finite
set of phases, typically estimated as less than 10. Hence such a system
can simultaneously represent only a small set of bindings. Of course,
with respect to short-term memory, the number-of-distinct-phases limita-
tion could turn out to be a virtue. Shastri and Ajjanagadde (1993) have
suggested that the limitation on the number of phases can capture lim-
its in rapid reasoning (but see Lange and Dyer, 1996), while Hummel
and Holyoak (1997) have suggested that the limitation on phases can
help to account for some phenomena in our computation of analogy. But
it is plain that as a means for representing long-term bindings between
variables and their instantiations, temporal synchrony is inadequate.
We probably can represent millions of bindings (such as facts about who
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did what to whom) in long-term memory, yet on nobody’s account can
the brain keep distinct millions of phases. Another limitation, which I
take up in chapter 4, concerns the representation of complex structure.

3.3.6 Discussion
In this section, I have suggested that a system of registers, implemented
either intracellularly or intercellularly, can serve as a substrate for repre-
senting variable bindings. But even if I am right, and even if we knew
what kind of neural substrate supported registers, we would be far from
understanding how relationships between abstract variables are repre-
sented and generalized.

Variables are one part of the story, operations over those variables
another. To clarify the difference, consider the distinction in digital com-
puters between registers and instructions. Registers store values; instruc-
tions, such as “copy” and “compare,” manipulate those values. My hunch
is that the brain contains a similar stock of basic instructions, each de-
fined to operate over all possible values of registers.

Even if my hunch is right, and even if we could identify exactly what
is in the brain’s basic set of mental instructions, an important open ques-
tion would be about how those instructions (in other words, operations
over variables) are combined. Digital computers depend on program-
mers who specify which instructions to use to complete a task. Their job
is often made easier by using a compiler or interpreter that translates a
high-level description in a programming language such as C++ or Java
into the machine language description of what to do in terms of the in-
structions that are built into the microprocessor.

In a few cases, the mind may depend on something vaguely analo-
gous, inasmuch as we can (unconsciously) translate high-level descrip-
tions such as repeat each word that I say or clap your hands when I say a word
that has the letter e in it into some sort of brain-usable format (Hadley,
1998). But in some cases we manage to extract a relationship between
variables on the basis of training examples, without being given an ex-
plicit high-level description. Either way, when we learn a new function,
we are presumably choosing among ways of combining some set of
elementary instructions.

In any case, even though we are a long way from being able to say what
the basic instructions might be and further from being able to say how
they are combined, we are in a position to begin. What I have shown thus
far in this chapter is that the fusion of vector coding and localist training
algorithms is not enough to account for free generalizations. Whether or
not you are satisfied with the register-based alternative that I have ad-
vocated, I hope to have persuaded you that the question is not whether
the mind performs operations over variables but how.
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3.4 Case Study 1: Artificial Grammars in Infancy

To further illustrate the importance of systems that can represent ab-
stract relations between variables, in the remainder of this chapter I con-
sider two domains in which a large number of connectionist models
have been proposed. The proliferation of models in these domains al-
lows us to consider what architectural properties of particular models
are and are not crucial to their operation.

The first case study comes from the ga ti ga infant experiments that I
described in section 3.1. In less than a year since these results were
published, at least nine distinct models have been proposed. Before I
compare these models, I want to make clear that my colleagues and I
were not arguing against all possible neural network models. Although
researchers such as Shultz (1999) have wrongly attributed to us the claim
that “neural network models are unable to account for data on infant
habituation,” we meant no such thing. Instead, as we said in our origi-
nal report, our goal was “not to deny the importance of neural net-
works” but rather “to try to characterize what properties the right sort
of neural network architecture must have” (Marcus, Vijayan, Bandi Rao
& Vishton, 1999, p. 80).

In fact, there are many ways of trying to capture our results in a neural
network substrate. The issue is whether the right kind of neural network
is one that implements variables, instances, and operations over vari-
ables. This issue turns out to be complex because not every author that
has described a model that incorporates variables, instances, and oper-
ations over variables has done so explicitly. Let us turn now to the mod-
els and try to understand how they work.8

3.4.1 Models That Do Not Incorporate Operations over Variables

A simple recurrent network The first model is a nonmodel, a demonstra-
tion that I myself conducted. I simply took Elman’s sentence-prediction
network and showed that it could not (unchanged) capture our infant
results. In keeping with the general strategy adopted by Elman, I set up
the infant task as a prediction task. That is, during training, the model was
given “sentences” one word at a time, with the target at a given point
being the next word in that sentence. For example, given the sentence
fragment ga ta, in the ABA condition the model’s target would be ga,
whereas in the ABB condition the model’s target would be ta. The test of
the model’s success was to see whether it could predict proper continu-
ations to novel sentence fragments such as wo fe (for example, the target
was wo in the ABA condition).

What I found—that the model was not able to predict the proper
continuations—should not be surprising, given the discussion of train-
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ing independence earlier in this chapter. Following Elman’s standard
practice, each novel word was represented by a new node. Since the
sentence-prediction network does not generalize between nodes (put-
ting aside the caveat about hidden units described earlier), the model
could not predict how a sentence fragment should be continued. Be-
cause the model’s inability to capture the infant data is due to the un-
derlying training independence, it follows that the simple recurrent
network would not be able to capture the infant results regardless of
what the learning rate was, regardless of how many hidden nodes there
were, and regardless of how many hidden layers were present.

One might ask, though, whether distributed representations (those in
which each node represents not a word but a part of a word) could solve
this problem. Indeed, when I first described the problems of training in-
dependence and how they undermined certain kinds of connectionist
models, a common response was to suggest that the problems could be
remedied by using distributed representations. For example, in a re-
sponse to an earlier discussion of mine, Elman (1998, p. 7) wrote that
“localist representations are useful but not necessary to the connection-
ist models Marcus is concerned about,” implying that distributed repre-
sentations might allow networks to overcome the problems of training
independence.

But distributed representations are not without costs. Models that
make use of distributed representations can be subject to a problem
known as the superposition catastrophe (Hummel & Holyoak, 1993; von
der Malsburg, 1981). This term refers to what happens when one tries
to represent multiple entities simultaneously with the same set of re-
sources. To take a simple example, suppose that we represented a as
[1010], b as [1100], c as [0011], and d as [0101]. Given such a repre-
sentational scheme, a single set of units would be unable to represent
unambiguously the simultaneous activation of a and d because the com-
bination of the two [1111] would also be the combination of b and c. As
Gaskell (1996, p. 286) observes, the consequence is that “distributed
systems cannot implement localist activation models literally.”

The superposition catastrophe matters with respect to the sentence-
prediction network because the goal of the network is to represent a set
of possible continuations, and the network needs to be able to do so un-
ambiguously. For example, if the model is trained on the sentences cats
chase mice, cats chase dogs, and cats chase cats, the optimal response to the
sentence fragment cats chase is to activate simultaneously mice, dogs, and
cats. If the output representations are localist, a network needs only to
activate simultaneously the relevant nodes. But if the output represen-
tations are genuinely distributed (with nouns and verbs truly overlap-
ping), it becomes much more difficult to activate all and only the nouns.
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After all, by hypothesis, the resources that represent nouns would over-
lap with the resources that represent verbs. For example, if the distrib-
uted representations encoded phonology, activating all the sounds that
occur in nouns would be tantamount to activating all the sounds that
occur in verbs. A model that represented words by phonological dis-
tributed representations would therefore be unable in general to keep
nouns and verbs distinct.

The same holds even for far more arbitrary distributed representa-
tion. For example, in an unpublished (but widely circulated) technical
report, Elman (1988) tested a version of the simple recurrent network
that—in contrast to the later published versions—did use distributed
output representations. Each word was assigned a random 10-bit bi-
nary vector. For example, each instance of the word woman was assigned
the code [0011100101], each instance of the word cat was assigned the
code [0101110111], each instance of the word break was assigned the code
[0111001010], and each instance of the word smell was assigned the code
[1111001100]. Because the representations of different words overlap, it
was not possible for the model to unambiguously represent all and only
the possible continuations to a given string—regardless of what compu-
tations the model performed. The best that the model could do was to
guess that the continuation would be the average of all the nouns, but
if patterns are truly assigned randomly, that average is just as likely to
correspond to some particular noun as it is to correspond to some verb.
(Indeed, since the codes for words are randomly assigned, it is a conse-
quence of the laws of probability that as the size of the vocabulary in-
creases, the average of the nouns and the average of the verbs would
tend to become indistinguishable.) The practical consequence is that the
output nodes of the sentence-prediction network could not distinguish
between nouns and verbs if it used random output representations.
Elman (1988, p. 17) reported that the distributed-output network’s “per-
formance at the end of training, measured in terms of performance, was
not very good.” At the end of five passes through 10,000 sentences, “the
network was still making many mistakes.”

The superposition catastrophe also renders Hinton’s family-tree
model incompatible with distributed output representations. Consider
a statement such as Penny is the mother of X. The response for X is Arthur
AND Victoria. In the localist output version of the family tree, the model
simply needs to activate simultaneously both the Arthur node and the
Victoria node. In a distributed output model, there is no suitable target.
Imagine, for instance, that Arthur is encoded by activating only input
nodes 1 and 2, Victoria by nodes 3 and 4, Penny by nodes 1 and 3, and
Mike by nodes 2 and 4. To indicate that Arthur and Victoria are both sons
of Penny, this distributed output version of the family-tree model needs
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to activate nodes 1, 2, 3, and 4: exactly the same set of nodes as it uses to
indicate Penny and Mike.

In any case, distributed representations can be of help only if the items
to which one must generalize have only those contrasts which the model
learned. We designed the second and third experiments of our infant
learning study so that a model that encodes inputs by means of binary
phonetic features (+/– voiced, +/– nasal, and so forth) is unable to capture
our results. For example, the test words vary in the feature of voicing
(e.g., if the A word is voiced, the B word is unvoiced), but the habit-
uation words are all voiced and thus provide no direct information
about the relation between voiced and unvoiced consonants. As I con-
firmed in further simulations with the sentence-prediction network,
changing from locally encoded inputs to phonetically encoded inputs
has no effect. (Further details about the simulations I conducted using
the sentence-prediction network are provided on my web site at http://
psych.nyu.edu/gary/science/es.html.)

Although there is no way for the sentence-prediction network to cor-
rectly predict the right continuations for the test items, Christiansen and
Curtin (1999) have claimed that a slight variant on the sentence-predic-
tion network can capture our data. Their model is essentially the same
as the phonetically encoded sentence-prediction network, but it has an
additional word boundary unit. The basis for their claim that they can
model our data is that in the test phase their model predicts word
boundaries better during presentations of inconsistent items than dur-
ing presentations of consistent items—a pattern that could (in tandem
with a further assumption that infants look longer when it is easier to
find word boundaries) explain our results. But Christiansen and Curtin
are forced to assume (implicitly) that infants can discern word bound-
aries in the test items but not in the habituation items. This entirely un-
motivated assumption makes little sense, since the gaps between words
were identical (250 ms) in both habituation and test. Furthermore, Chris-
tiansen and Curtin offer no account of why the model should show the
particular preference that it does: Why should grammaticality correlate
negatively with segmentability? The result may in fact be nothing more
than noise. Christensen and Curtin provided no statistical tests of their
main result.9

A simple recurrent network with “weight-freezing” A slight variation of
the simple recurrent network, proposed by Altmann and Dienes (1999),
comes closer to robustly capturing our results. The model is illustrated
in figure 3.9. In many ways, this model is like a standard sentence-pre-
diction network. It shares roughly the same architecture and shares the
assumption that sentences are input in a word-by-word fashion, with
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the target always being the next word in a sentence. What might not be
obvious from Altmann and Dienes’s discussion of the model is that—
like the standard sentence-prediction network—the Altmann-Dienes
network is not actually able to predict on the first trial how a given test
fragment should be continued. Instead, Altmann and Dienes base their
claim that the model can capture our infant results on a kind of savings
effect. Savings is a term psychologists use to describe an advantage to
learning a second set of items given training on a first set. Altmann and
Dienes showed that there is greater savings in learning consistent test
items than in learning inconsistent test items. For example, an Altmann-
Dienes network that is trained on sentences like ga ta ga learns the new
sentence wo fe wo faster than it learns the new sentence wo fe fe.

It is not entirely clear why the model should show such a savings
effect, but based on some pilot testing I believe that the savings effect is
robust and that it probably stems from the two key differences between
this model and the original simple recurrent network: an additional
layer of hidden units and an external device that “freezes” the weights
between the two hidden layers during testing.

The additional hidden layer means that rather than learning about
relationships between input units, the Altmann-Dienes model learns
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Figure 3.9
Altmann and Dienes’s (1999) variant on the simple recurrent network. This model includes
an additional hidden layer and a mechanism that during training selectively freezes the
weights of the connections that run between hidden layers and from the hidden layer to
the context units. In the habituation period all connections can vary freely except those
from h2 to c1 (which are fixed at 1.0). In the test phase the only connections that can vary
are those drawn in dotted lines.



about relationships between hidden unit encodings of the inputs. In other
words, the first hidden layer in the Altmann-Dienes model (that is, the
one closer to the input nodes) bears the same relationship to the second
hidden layer as the input nodes in a standard simple recurrent network
bear to the (only) hidden layer in that type of network. The consequence
is that the layer that feeds into the output units learns not about rela-
tionships between input units but about relationships between hidden
unit recodings of the input units.

By itself, the additional hidden layer makes no difference: training
independence still applies. But the additional layer is combined with
the novel weight-freezing mechanism, and the combination of the two
seems to make it easier to learn consistent items than inconsistent items.
If the test items are consistent with the habituation items, the model can
acquire a new test sentence by forcing the set of test words to elicit pat-
terns of hidden unit activity that correspond to the patterns elicited by
the original set of input words. Since the model already “knows” how to
deal with those encodings, learning is relatively efficient. In contrast, if
a given test item is inconsistent with the habituation sentences, the
model must learn both new encodings and new relationships between
those encodings. This process is impaired by the freezing of the connec-
tions from hidden layer 1 to hidden layer 2, and so there is an advantage
to learning consistent items.

But while the Altmann-Dienes (1999) model (arguably)10 captures the
empirical results reported in Marcus, Vijayan, Bandi Rao, and Vishton
(1999), the model does not fully capture the spirit of the Marcus et al. re-
sults: it does not truly derive a UQOTOM. For example, in simulations
I found that once the Altmann-Dienes model was trained on la ta la, it
predicted that a child would look longer at a consistent item such as ta
la ta than at an inconsistent item ta la la, apparently because the model
has learned to predict that la is a likely third word. Children would, I
suspect, do the opposite.

Although I have not tested that particular prediction, Shoba Bandi
Rao and I tested a similar one, also derived from the model, comparing
new infant data with new simulation data. In the simulations, all of the
habituation items were the same as in our original experiments. I gave
the model a chance to map wo fe wo onto ga ti ga and then tested it on fe
wo wo versus fe wo fe. The model, presumably driven by information
about the final word rather than the abstract ABA structure, favored fe
wo wo (or, cashed out as looking time, the model predicted that the in-
fants would look longer at fe wo fe).

In contrast, we found that infants look longer at fe wo wo than at fe wo
fe (Marcus & Bandi Rao, 1999). Thus while the Altmann and Dienes
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architecture does offer a bona fide alternative account of the original
Marcus et al. results, it does not truly extract a UQOTOM, and our
additional data suggest that it does not appear to yield an account of
what infants actually do. Children seem to freely generalize the ABA
sequence, ignoring facts like whether wo appears as the third word,
whereas the Altmann-Dienes model is driven only be more particular,
less general kinds of information.

3.4.2 Models That Incorporate Operations over Variables

A simple recurrent network trained by an external supervisor What other al-
ternatives are there? Seidenberg and Elman (1999a) proposed one pos-
sible solution. Their model has two parts—a simple recurrent network
and an external supervisory device. The network part of the model is
much like the simple recurrent networks described earlier in this chap-
ter, but the system as a whole differs. Whereas standard versions of the
SRN are trained by a signal that is readily available in the environment
(the next word in a sentence), Seidenberg and Elman’s model is trained
by an external supervisor that itself applies a rule of the form “For all syl-
lables x, y, if x = y, then output 1 else output 0.”

Since the existence of an external supervisor that incorporates a rule
makes the difference between the system working and a nearly identi-
cal system not working, it seems that the rule is a crucial component of
the overall system.11 Unfortunately, Seidenberg and Elman (1999a) do
not give an account of how the supervisor’s rule could itself be imple-
mented in the neural substrate, so their model tells little about how rules
might be implemented in a neural substrate.

A feedforward network that uses nodes as variables Shultz (1999) showed
how an autoassociator network (one in which the target is always the
same as the input) could capture our results. Crucial to the success of
the model is the encoding scheme. Rather than using nodes to represent
particular words (as in the sentence-prediction network) or the pres-
ence or absence of particular phonetic features (à la Seidenberg and
Elman, 1999a) Shultz uses each node as a variable that represents a
particular position in the sentence. In other words, rather than using a
many-nodes-per-variable encoding scheme, Shultz uses a one-node-
per-variable encoding scheme.

In all, Shultz uses three input nodes and three output nodes, each of
which represents a word position. One input node represents the vari-
able first word in the input sentence, another represents the variable sec-
ond word in the sentence, and the remaining one represents the variable
third word in the sentence.12 Likewise, each output node represents a
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particular word.13 The nodes serve as variables, and their activation val-
ues represent specific instances. For example, if the first word is ga,
Shultz turns on the first input node with a value of 1; if the first word is
li, Shultz turns on the first input node with a value of 3; if it is ni, he turns
on the first input node with a value of 7.

As was shown earlier, a connection that runs from an input node that
represents a variable to a hidden node with a connection weight of 1 is
simple implementing an operation that copies the contents of one vari-
able to the contents of another. Since the connection treats all possible
instances equally, the copy operation applies equally to all possible in-
stantiations of the input variable.

The task of Shultz’s model is auto-association. The measure of the
model that Shultz adopted is how closely the output units reflect the
input units. The idea is that the model will better auto-associate (copy)
inputs that are consistent with habituation than inputs that are incon-
sistent with training.

While Shultz does not provide information about what connection
weights the network actually uses, it is easy to see how this network
could capture the results in a way that implements operations that are
defined for all instances of some variable (or what I have called algebraic
rules). For example, figure 3.10 shows how a simplified version of
Shultz’s model can (transparently) implement operations over variables.

In a similar but slightly more complex work (published prior to
Shultz’s 1999 article), Negishi (1999) shows how a modified simple re-
current network can use nodes that represent variables to cap-
ture our results. Negishi’s model is slightly more complex, in part
because each word is encoded by means of two variables, but the gen-
eral point remains the same: it relies on using nodes as variables, with
connections indicating operations that must apply to all instances of a
class, rather than indicating operations that pertain only to those ele-
ments that contain some particular feature.

A still more complex variation on this theme was presented by Gasser
and Colunga (1999). The authors use a set of micro-relational units, each
of which recodes the sameness or difference between two particular
items. For example, one micro-relational unit responds in accordance
with the degree of similarity between the first word and the last word. In
effect, these microrelational units work like an instruction in a micro-
processor that calculates the cosine between any two numbers x and y.
What is crucial is that the behavior of these microunits is not condi-
tioned on experience but rather, as in a microprocessor, defined in
advance for all possible instances of x and y. As Gasser and Colunga
note, their model would be able to capture our results with such units.
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A temporal synchrony model Shastri and Chang (Shastri, 1999; Shastri &
Chang, 1999) have implemented a different sort of model. Unlike the
models of Shultz and of Altmann and Dienes, this model was not im-
plemented as an apparent argument against the idea that children
represented algebraic rules, but as an explicit suggestion about how
such rules can be implemented in a neural substrate. Following the tem-
poral synchrony framework, Shastri and Chang use one set of nodes to
represent temporal variables (1st word, 2nd word, 3rd word) and an-
other set of nodes to represent phonetic features (+voiced, and so on).
Rules are represented by links between the variables. In essence, the
ABA rule is represented by having a single “hidden” node that is linked
to both 1st word and 3rd word. This assembly forces the nodes repre-
senting first and third words to resonate in synchrony, thereby binding
them to the same instantiations.

An abstract recurrent network Another approach is to use registers.
In effect, the abstract recurrent network model of Dominey and Ra-
mus (2000), depicted in figure 3.11 does just that. Dominey and Ramus
tested what would happen if the model did not have the register-like
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mar in a feedforward network that uses nodes to represent variables rather than particu-
lar words or properties of sets of words. This model auto-associates ABA sentences better
than ABB sentences.



component. They found that the registerless version of the model could not
capture our results but that the version that incorporates registers and
an operation that compares the values of those registers with the cur-
rent input was able to capture our results. Supporting our view (albeit
perhaps reluctantly) Dominey and Ramus (2000, p. 121) conclude that
“Even though, like Seidenberg (1997), we feel that the statistical proper-
ties of the input have too often been overlooked, both Marcus et al.’s ex-
periments and our simulations show that learning cannot be reduced to
the discovery of statistical regularities on the surface.” Instead, they note
that the version of the model that could capture our results differs from
the version that could not in that it “includes the recognition function,
which is a comparator, a typically nonassociationist mechanism”—one
that applies the same operation to all instances of a variable.

3.4.3 Summary
The bottom line should be clear: what makes the successful connection-
ist models work is a facility for representing operations that apply to all
instances in a class. As the summary given in table 3.2 makes clear, the
few connectionist models that do not incorporate any sort of genuine op-
eration over variables cannot capture our results, whereas all of the mod-
els that do implement operations over variables can capture our results.

3.5 Case Study 2: Linguistic Inflection

Perhaps the only test case in which there is a wider array of connection-
ist models is the domain of linguistic inflection. Elman et al.’s, 1996, re-
view of connectionist models of development devotes more pages to
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inflection than any other empirical topic; at least 21 different models
have been proposed. Most focus on the English past tense.

3.5.1 Empirical Data
What sort of empirical data can be used to choose among these models?
Most of the empirical data in this literature has been collected in the con-
text of a model originally proposed by Pinker and Prince, and defended
by several others, including myself. That model includes a rule-based
component for inflecting regular verbs (walk-walked) and an associative
memory, perhaps perceptron-like, for inflecting irregular verbs (sing-
sang, go-went, and so forth). On this view, the irregular component takes
precedence over the operation of the rule-based component. Consistent
with this model, a great deal of evidence suggests that regulars and ir-
regulars behave in qualitatively different ways (Berent, Pinker & Shimron,
1999; Clahsen, 1999; Kim, Marcus, Pinker, Hollander & Coppola, 1994;
Kim, Pinker, Prince, & Prasada, 1991; Marcus, 1996b; Marcus, Brinkmann,
Clahsen, Wiese & Pinker, 1995; Marcus et al., 1992; Pinker, 1991, 1995,
1999; Pinker & Prince, 1988; Prasada & Pinker, 1993; Ullman, 1993). For
example, Prasada and Pinker (1993) showed that generalizations of ir-
regular patterns are sensitive to similarity to stored forms but that
generalizations of the regular pattern are not sensitive to similarity. It
seems more natural to inflect the novel verb spling (which resembles other
irregulars such as sing and ring) as splang than to inflect the novel verb nist
(which does not closely resembles any irregular) as nast, even though both
verb stems undergo the same vowel change. In contrast, it seems no more
natural to inflect plip (which resembles regulars such as rip, flip, and slip)
as plipped than to inflect ploamph (which does not closely resemble any reg-
ular) as ploamphed. Further evidence also suggests regulars and irregulars
are processed in different brain areas (Jaeger et al., 1996; Pinker, 1999; Ull-
man, Bergida & O’Craven, 1997) and may be (doubly) dissociable in pa-
tient populations (Marslen-Wilson & Tyler, 1997; Ullman et al., 1997).

In what follows, I use three criteria for evaluating competing models.
The first is that a model should be able to add -ed freely to novel words,
even those with unfamiliar sounds. For example, Berko (1958) showed
that children tend to generalize -ed inflection to novel words like wug:
This is a man who knows how to wug. What did he do yesterday? He .
Similarly, adults seems to be able to freely generalize -ed to words of
virtually any sound. We might say that Yeltsin outgorbacheved Gorbachev,
even if we do not know any other verb that sounds like outgobachev. A
further bit of evidence that the operation of -ed is rule-like is that chil-
dren seem to be able to apply it even to verb stems that are homoph-
onous with irregular verbs. When they are told This is a ring. Now I’m
ringing your finger. What did I just do?, adults (Kim, Pinker, Prince &
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Prasada, 1991) and even three-year-old children (Kim, Marcus, Pinker,
Hollander & Coppola, 1994) respond You just ringed my finger not You just
rang my finger.

The second criterion is about frequency. Although adding -ed is the
most common way of inflecting English verbs, -ed’s qualitative status as
a default (it can be added to unusual sounding words, to verbs derived
from nouns, and so forth) does not appear to depend on its high fre-
quency, whether measured in terms of the number of distinct verbs
(types) or the number of distinct occurrences of those verbs (tokens). In-
stead, we find cases like the German -s plural—a suffix that applies to
fewer than 10 percent of the nouns (measured by types or tokens) and
yet behaves in ways that are qualitative virtually identical to English de-
fault inflection (Marcus, Brinkmann, Clahsen, Wiese & Pinker, 1995).
For example, just as we would say that Last night we had the Julia Childs
over for dinner, a German speaker would say that I read two Thomas Manns
rather than two Thomas Männer. An adequate model should therefore
produce defaultlike effects even when the regular pattern is no more
common or even less common than the irregular patterns.

The third important criterion for evaluating competing models is that
when people do apply a default suffix, they almost always apply it to a
verb’s stem rather than to an inflected version of the stem. Children, for
example, produce errors like breaked about 10 times as often as errors like
broked (Marcus et al., 1992). Similarly, given a novel verb like spling,
adults may produce splang or splinged, but they hardly ever produce
splanged (Prasada & Pinker, 1993). An adequate model should thus avoid
splanged-like blends in which -ed is added to something other than a
verb’s stem.14

3.5.2 Three Criteria Applied
Which models best capture these empirical data? Paralleling my dis-
cussion of models of artificial grammar learning, I suggest again that
adequate models must incorporate some sort of machinery for repre-
senting abstract relationships between variables. In the remainder of
this chapter, I review the connectionist models of inflection, dividing
them into models that explicitly implement abstract relationships be-
tween variables, models that do not implement abstract relationships
between variables, and models that are billed as alternatives to symbol-
manipulation but that nonetheless turn out to implement abstract rela-
tionships between variables.

Table 3.3 lists 21 connectionist models of inflectional systems, the vast
majority of which are multilayer perceptrons, giving details about their
architectures, encoding schemes, and training regimes; I taxonomize
and evaluate them in the next several pages.
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Models that explicitly implement abstract relationships between variables A
small number of models explicitly implement a rule-and-memory sys-
tem, very much along the lines of what Pinker and I have advocated. The
model that comes closest to ours was proposed by Westermann and
Goebel (1995, p. 236) “in accordance with the rule-associative memory
hypothesis proposed by Pinker (1991)” and incorporating a module that
serves as a short-term memory to represent “the rule path of the dualis-
tic framework” and a phonological lexicon to implemented the irregu-
lars (see figure 3.12).
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Table 3.3
Past-tense models.

Type of model Reference Input Output

Feedforward network Rumelhart & Phonology Phonology
McClelland (1986a)

Feedforward network Egedi & Sproat (1991) Phonology Phonology
Feedforward network MacWhinney & Phonology Phonology

Leinbach (1991)
Feedforward network Plunkett & Marchman Phonology Phonology

(1991)
Attractor network Hoeffner (1992) Semantics Phonology

and syntax
Feedforward network Daugherty & Seidenberg Phonology Phonology

(1992)
Feedforward network Daugherty & Hare (1993) Phonology Phonology
Feedforward network Plunkett & Marchman Phonology Phonology

(1993)
Feedforward network Prasada & Pinker (1993) Phonology Phonology
Feedforward network Bullinaria (1994) Phonology Phonology
Simple recurrent network Cottrell & Plunkett (1994) semantics Phonology
Feedforward network Forrester & Plunkett (1994) Verb ID Class ID
Feedforward network Hare & Elman (1995) Phonology Class ID
Hybrid (see text) Hare & Elman (1995) Phonology Phonology
Hybrid (see text) Westermann & Goebel Phonology Phonology

(1995)
Feedforward network Nakisa & Hahn (1996) Phonology Class ID
Feedforward network O’Reilly (1996) Semantics Phonology
Feedforward network Plunkett & Nakisa (1997) Phonology Class ID
Feedforward network Plunkett & Juola (1999) Phonology Phonology
Hybrid (see text) Westermann (1999) Phonology Phonology
Feedforward network Nakisa, Plunkett, & Hahn Phonology Phonology

(2000)
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Their model is, at least to some extent, able to capture a default in which
the type frequency of regular verbs is not overwhelmingly greater than
that of irregular verbs. Their model, which is trained on a corpus of only
about 52 percent regular verbs, measured by types (45 percent measured
by tokens), is able to generalize the regular pattern to three of four novel
test words that do not sound similar to any of the training items.

A later model by Westermann (1999) is also able to capture the fact
that people can freely generalize the regular inflection pattern to novel
stems. Like Westermann’s earlier model, Westermann’s more recent
model also builds in two routes. In this later model, one route depends
on an abstract relation between variables that is implemented as a set of
copy weights. These copy weights—which effectively build in the iden-
tity function prior to input—guarantee that the model can copy the stem
of any verb, even prior to any training. Like the earlier model by Goebel
and Westermann, Westermann’s more recent model is able to capture
free generalization of default inflection to novel, unusual-sounding verb
stems, and it appears to be able to do so even in the absence of high type
frequency for regular inflection.

Models that offer a genuine alternative to rules Although these rule-
implementing models of Westermann do at least a reasonable job of
capturing empirical data, most of the connectionist models on inflection
have been presented with the aim of providing alternatives to rules. For
example, the first and most famous connectionist model of inflection
was proposed by Rumelhart and McClelland (1986a). As we saw earlier,
these authors proposed their model as a “distinct alternative to the view
that children learn the rule of English past tense formation in any ex-
plicit sense” (p. 267). Throwing down the gauntlet, Rumelhart and Mc-
Clelland (1986a, p. 267) aimed to show that “a reasonable account of the
acquisition of past tense can be provided without recourse to the notion
of a ‘rule’ as anything more than a description of the language.”

Their model, sketched in figure 3.13, works by taking a phonetically
encoded input and transforming it into a phonetically encoded output.
For example, the input to the model on a given trial is a phonetic de-
scription of the word ring, and the target output is rang. Words consist of
sets of triples, known as Wickelfeatures. Simplifying slightly, the word
sing is represented by the simultaneous activation of the triples #si, sin,
ing, and ng#, where # is a special marker for the beginning or end of
a word.

Unlike many of its successors, the Rumelhart-McClelland model
lacked hidden units. Yet the model did surprisingly well, capturing
some interesting qualitative phenomena. For example, although the
model did not have any explicitly represented rules, it added -ed to some
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novel verbs, which yielded “overregularizations” like breaked and taked.
Likewise the model produced some correctly inflected irregular verbs
before it first began to overregularize.

Nonetheless, it is now widely acknowledged that the model is seri-
ously flawed. For example, the model’s ability to capture a period of
correct irregular use prior to overregularization15 depends on an unre-
alistic, abrupt change from an almost entirely irregular input vocabulary
to an almost entirely regular input vocabulary (Marcus et al., 1992;
Pinker & Prince, 1988). Another problem is that the model is unable to
generalize well to novel words, producing bizarre blends such as the
past tense membled for mail and the past tense imin for the novel verb
stem smeeb (Prasada & Pinker, 1993). In addition, the Wickelfeature sys-
tem that the model uses to represent a word cannot keep certain pairs of
words distinct, such the Australian language Oynkangand’s words algal
(“straight”) and algalgal (“ramrod straight”) (Pinker and Prince, 1988,
p. 97). The model would also likely have trouble generalizing to a default
that is low in frequency (Marcus, et al., 1995).

But if the model’s limitations are by now widely acknowledged, there
is far less consensus on what to do about these problems or on what
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Output

Input

#ju #ri ang#si ing mp# umpng# mpe ped ed#

#ju #ri ang#si ing mp# umpng# mpe ped ed#

Figure 3.13
Rumelhart and McClelland’s (1986a) two-layer pattern associator that represents words as
sequences of three letters. Input and output nodes encode Wickelfeatures (sequences of
three phonetic features) rather than sequences of three letters. The actual model has 460
input nodes, each of which is connected to each of 460 output nodes; all words are repre-
sented as subsets of those nodes.



aspects of the model’s architecture are responsible for its limitations.
Although Pinker and I attribute the limitations of the Rumelhart and
McClelland model to its lack of rules, others attribute the limitations to
the model’s lack of a hidden layer. For example, McClelland (1988, p. 118)
argues that “a problem with the [Rumelhart & McClelland, 1986] past-
tense model is that it has no intervening layers of units between the input
and the output. This limitation has been overcome by the development
of the back-propagation learning algorithm (Rumelhart, Hinton &
Williams, 1986).”

Echoing McClelland’s remarks, Plunkett and Marchman (1991, p. 199)
argue that “the use of a back-propagation algorithm in a network with
hidden units represents a step forward in the application of PDP sys-
tems to problems of language processing and acquisition.” Similarly,
Hare, Elman, and Daugherty (1995, p. 607) acknowledge some of the
criticisms raised by Prasada and Pinker (1993) but attribute the lim-
itations to two-layer networks, suggesting that while the Rumelhart-
McClelland model “was a remarkable contribution to the field,
advances in learning theory have made it obsolete in certain respects
and its shortcomings do not carry over to the more sophisticated archi-
tectures that have since been developed.”

In keeping with these suggestions, many researchers have pursued
more sophisticated multilayer perceptron models, models that are simi-
lar in spirit to Rumelhart and McClelland’s model but are enhanced with
a hidden layer and more plausible training regimes and phonetic repre-
sentation schemes. Like the Rumelhart-McClelland model, many subse-
quent models have continued to treat the task of past tense acquisition
as one of using a single network to learn a mapping between a pho-
nologically represented stem and phonologically represented inflected
form. In the words of Elman et al. (1996, p. 139), the goal of these models
is to support a position in which “regular and irregular verbs . . . [are]
represented and processed similarly in the same device.”

Yet these models continued to face many of the same limitations that
the earlier Rumelhart and McClelland model faced. It is striking that,
contrary to the stated goals of Elman et al., no one has yet proposed a
comprehensive single-mechanism model. Instead, what has been pro-
posed is a series of models, each devoted to a different aspect of the past
tense: one model for why denominal verbs (such as ring as in ring a
city with soldiers) receive regular inflection (Daugherty, MacDonald,
Petersen & Seidenberg, 1993), another for handling defaults for low-
frequency verbs (Hare, Elman & Daugherty, 1995), another for distin-
guishing homonyms that have different past-tense forms (MacWhinney
& Leinbach, 1991), and still another for handling overregularization
phenomena (Plunkett & Marchman, 1993). These models differ from
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one another in their input representations, their output representations,
and their training regimes. Far from showing how inflection can be
implemented in a single device, these models—taken collectively—
could just as easily be taken as evidence that more than one mechanism
is necessary.

More to the point, the models that map from phonetic representations
to phonetic representations still have trouble capturing the general-
ization of default inflection to unfamiliar words and still have trouble
explaining how default inflection can be generalized in languages in
which it is infrequent. For example, Plunkett and Marchman (1993) con-
ducted a series of simulations in which they systematically varied the
proportion of the input vocabulary that was regular, testing how likely
each network was to generalize regular inflection to novel words that
did not closely resemble any of the words on which the model had been
trained. They found that “the level of generalizations . . . [is] closely re-
lated to the total number of regular verbs in the vocabulary” (p. 55).
They also reported that “generalization is virtually absent when regu-
lars contribute less than 50% of the items overall” (p. 55). Such models
would thus have difficulty capturing default inflection where the de-
fault is not the most frequent pattern.

Such models also frequently produce blends, adding regular inflec-
tion to the past tense of the verb (such as ated) rather than to the verb
stem (such as eated). For example, Plunkett and Marchman’s (1993)
model produced far more ated-type blends (6.8 percent) than eated type
overregularizations (less than 1 percent), whereas children produce far
more eated type overregularizations (4 percent in a sample of preschool-
ers) than ated-type blends (less than 1 percent) (Marcus et al., 1992).16

Similarly, Daugherty and Hare’s (1993) model produced such blends in
half (six out of 12) of its responses to words containing novel vowels.

Why do networks that map phonetically encoded stems onto phonet-
ically encoded past tense forms have such difficulties? It is instructive to
think about how these networks inflect regular verbs. In the rule-and-
memory model, novel regulars are inflected by a process that con-
catenates a variable (verb stem) with the -ed morpheme. As such it is
automatically defined to apply equally to all verb stems, regardless of
their sound. The operation of the rule may be suppressed by the asso-
ciative system, so sometimes the rule may not be invoked at all (or alter-
natively, the rule might be invoked but its actual output suppressed.)
But its output is uniform, unaffected by similarity: walk in, walked out;
outgorbachev in, outgorbacheved out.

Implicit in this is a sort of identity operation. Putting aside the ir-
regulars, part of the past tense of an English verb x is x. For example, one
part of the past tense of outgorbachev is outgorbachev itself. The rule-
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memory model explains this by saying, effectively, that the past tense of
the verb is a copy of the verb stem, suffixed by the -ed morpheme.

Pattern associators like Rumelhart and McClelland’s (1986) model of-
fer a different account of how novel regular verbs are inflected with reg-
ular inflection. In the place of an operation that is defined over the
variable verb stem, they offer a set of lower-level associations in which
phonologically defined parts of verb stems are associated with phono-
logically defined parts of past tense forms. Fundamentally, such models
are many-nodes-per-variable models. This means that they must learn
the “identity map” part of regular inflection piecemeal. If input nodes
stand for phonemes, the models must learn identity for each phoneme
separately; if input nodes stand for phonetic features, the models must
learn identity for each phonetic feature separately.

Depending on the nature of the input representation, this piecemeal
learning may or may not make learning the identity map part of inflec-
tion problematic. If the input nodes represent phonemes, a model would
not be able to properly produce the past tense form that corresponds to
an input verb that contains a novel phoneme. For example, if the sound
/z/ as in the word rouge never appeared in training on verbs, a model
that allocates a separate node to /z/ will not generalize to that node.
Such a model thus will be incapable of explaining how a native speaker
inflects rouge as rouged (as in what the aging film star played by Diane
Wiest does to her cheeks in Bullets over Broadway, just prior to having a
couple of drinks with John Cusack).

If the /z/ sound is represented by a set of phonetic features, all of
which appear in training, inflecting rouge as rouged is not problem-
atic. But going to phonetic representations is probably not a panacea. I
suspect, for example, that English speakers could, at least in com-
prehension, distinguish between, say, inflected words that copy a stem
that contains a novel feature and inflected words that omit that novel
feature. For example, I suspect that English speakers would prefer
Ngame out!ngaioed !Ngaio to Ngame outngaioed !Ngaio, so even a model
that represents inputs in terms of phonetic features (rather than pho-
nemes) would have trouble. (For that matter, further problems arise if
it turns out that we can inflect unpronounceable glyphs—for example,
if we recognize the well-formedness of the [written] sentence, In sheer
inscrutability, the heir apparent of the artist formerly known as Prince has 
out ed .)

In any case, swapping a process that operates over variables for a pro-
cess that relates a regular verb and its past tense only in a piecemeal way
results in a problem with blends. If there is no stem-copying process as
such, nothing constrains the system to use the -ed morpheme only when
the stem has been copied. Instead, whether the stem is transformed (as
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with an irregular) or copied (as with a regular) is an emergent property
that depends on a set of largely independent, piecemeal processes. If the
system learns that i sometimes changes to a, there is little to stop it from
applying the i-a process at the same time as the process that causes -ed to
appear at the end. The consequence is lots of blends, such as nick-nucked,
that humans rarely if ever produce. Humans tend to make a discrete
choice between nack and nicked because the pathway that adds -ed adds
-ed to the stem; networks that lack a separate pathway from regulars
have no such constraint. If i activates a but ck activates cked, a blend is
produced. The bottom line—for models that lack a process defined over
the variable verb stem—is this. Even if one uses low-level phonetic
features to represent words, where there are irregulars it is difficult to
correctly generalize the -ed pattern to novel unusual-sounding words
without producing spurious blends.

Classifier models: Alternatives to rules? If these phonetics-to-phonetics
models were the only alternatives to Westermann’s (1999) models that
explicitly implement rules, perhaps the controversy would already be
over. What has kept the controversy going, I think, is that there is a wide
variety of other connectionist models of inflection that operate on dif-
ferent principles and these models do not map phonetically encoded
inputs into phonetically encoded outputs. These models—which are
billed as alternatives to algebraic rules (that is, operations over vari-
ables)—do a better job of capturing the human data and their phonetics-
to-phonetics cousins. But it turns out that each of these models either
implements algebraic rules or depends on an external device that does.

One class of models, which I refer to as classifiers, produces as its out-
put not a phonological description (such as /rang/ or /jumpd/) but
simply a label. This label indicates whether a given input word belongs
to, say, the ing-ang class or the add -ed class. The process of inflecting
the input word is not complete until some external device concate-
nates the verb stem as input with the -ed subjects. There is of course, noth-
ing wrong with relying on such an external device. But assuming the
existence of such a device (unnecessary in the case of phonetics-to-
phonetics models) is tantamount to including two algebraic rules: one
that copies the stem and another that concatenates it with -ed.

By building in (offstage, as it were) operations such as “copy” and
“concatenate,” these models start with the relevant abstract relation-
ships between variables and thus avoid the problems that would other-
wise arise as a consequence of training independence. They do not,
however, obviate the need for rules.17

The clean-up network: Implementation or alternative? As a final illustra-
tion, consider the two-part network proposed by Hare, Elman, and
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Daugherty (1995) and illustrated in figure 3.14. Billed as an alternative
to the rule-and-memory approach, this model effectively implements a
rule-and-memory model. The model consists of two components—a
feedforward network depicted at the bottom of the diagram and a clean-
up network at the top. The feedforward network works much like any
other phonetics-to-phonetics model and by itself does not implement a
rule. But the single solid line that appears on the left side of the diagram,
running from the input nodes to the clean-up network, does. This line
actually represents a set of six connections that serve as a prewired copy
operation—thereby finessing the training independence issues by guar-
anteeing in advance that all possible verb stems will be copied, even if
the model received no training at all.18
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Figure 3.14
Hare, Elman, and Daugherty’s (1995) hybrid model: A clean-up network and a feedfor-
ward network. Reprinted by permission.
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In addition to a prewired copy operation that passes the stem along to
the clean-up network, the Hare, Elman, and Daugherty (1995) model in-
cludes a mechanism that comes close to recapitulating the “blocking”
mechanism that Pinker and I suggested modulates the relation between
irregulars and regulars. The mechanism that we had advocated was,
“Search for an irregular, use it if you find it, and otherwise fall back on
the default.” The Hare et al. model operates on essentially an identical
principle. The feedforward network supplies a guess about how the in-
put verb might be inflected if it were an irregular; this guess, along with
the verb stem, is passed along to the clean-up network. The clean-up
network, which learns nothing, is innately wired such that if the model’s
guess about the irregular is strongly activated, output nodes that repre-
sent the stem and the -ed suffix are suppressed. In contrast, if the irregu-
lar is weakly activated, both the stem and -ed are strongly activated. As
in the classifier models, the suffixation process is actually handled by an
external device. Rather than being an alternative to rules, the Hare et al.
model relies on rules extensively.19

This case is particularly instructive because Hare, Elman, and
Daugherty (1995) attribute the success of their model to its hidden layer
and to its assumptions about the phonological distribution of the in-
put words (that is, the similarity between different verbs of different
classes). Because earlier work by Egedi and Sproat (1991) led us to be
skeptical about the importance of hidden layers, Justin Halberda and I
(Marcus & Halberda, in preparation) tested to see whether an imple-
mentation of the Hare et al. model that lacked a hidden layer would per-
form notably worse. We found that it did not, doing just as good a job of
generalizing to novel, unfamiliar words as did a version of the model
that included hidden layers. In contrast, we found that the clean-up net-
work was crucial to the success of the Hare et al. model. A version of the
model in which the clean-up network was removed did far worse than a
version of the model that contained the clean-up network, producing far
more blends than humans produce.

3.5.3 Discussion
The past tense question originally became popular in 1986 when Rumel-
hart and McClelland (1986a) asked whether we really have mental
rules. Unfortunately, as the proper account of the past tense has become
increasingly discussed, Rumelhart and McClelland’s straightforward
question has become twice corrupted. Their original question was
“Does the mind have rules in anything more than a descriptive sense?”
From there, the question shifted to the less insightful “Are there two
processes or one?” and finally to the very uninformative “Can we build
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a connectionist model of the past tense?” The “two processes or one?”
question is less insightful because the nature of processes—not the sheer
number of processes—is important. A bipartite model can be built as a
hybrid (as Pinker and I suggest), a bipartite symbolic model, or even a
bipartite multilayer perceptron, with one “expert” devoted to regulars
and another to irregulars (e.g., Jacobs, Jordan & Barto, 1991). Likewise
one can build monolithic models from either architecture. The sheer
number tells us little, and it distracts attention from Rumelhart and
McClelland’s original question of whether (algebraic) rules are impli-
cated in cognition.

The “Can we build a connectionist model of the past tense?” question
is even worse, for it entirely ignores the underlying question about the
status of mental rules. The implicit premise is something like “If we can
build an empirically adequate connectionist model of the past tense, we
won’t need rules.” But as we have seen, this premise is false: many con-
nectionist models implement rules, sometimes inadvertently.

Opponents of symbol-manipulation rarely consider this issue and in-
stead take for granted that their models, by virtue of being connection-
ist, serve as refutations of variable-manipulating models. For instance
Hare, Elman, and Daugherty’s (1995) clean-up network did indeed over-
come one of the key limitations of early connectionist models of the past
tense. Because it is a connectionist model, Hare et al. took this model as
a refutation of the rule-and-memory model. But as we have seen, the
Hare et al. model reveals that it is not a genuine counter to the rule-and-
memory model but virtually an implementation of it.

The right question is not “Can any connectionist model capture the
facts of inflection?” but rather “What design features must a connec-
tionist model that captures the facts of inflection incorporate?” If we
take what the models are telling us seriously, what we see is that those
connectionist models that come close to implementing the rule-and-
memory model far outperform their more radical cousins. For now, as
summarized in table 3.4, it appears that the closer the past tense models
come to recapitulating the architecture of the symbolic models—by in-
corporating the capacity to instantiate variables with instances and to
manipulate (here, “copy” and “suffix”) the instances of those vari-
ables—the better they perform.

Connectionist models can tell us a great deal about cognitive archi-
tecture but only if we carefully examine the differences between models.
It is not enough to say that some connectionist model will be able to
handle the task. Instead, we must ask what architectural properties are
required. What we have seen is that models that include machinery for
operations over variables succeed and that models that attempt to make
do without such machinery do not.
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