
Chapter 2

Multilayer Perceptrons

This chapter is devoted to multilayer perceptrons—how they work,
what people have said about them, and why people find them attractive.
Because multilayer perceptrons are the only explicitly formulated com-
petitors to symbol-manipulation, it is important to understand how they
work, on their own terms. Readers who are already familiar with the op-
eration of multilayer perceptrons might skip section 2.1 in this chapter
(How Multilayer Perceptrons Work), but readers who are unfamiliar
with how they operate are strongly encouraged to read this chapter in
its entirety. For even though I ultimately argue that multilayer percep-
trons do not offer an adequate basis for cognition, understanding their
operation is an important step toward building alternative accounts of
how cognition could be implemented in a neural substrate. So it is worth
taking some time to understand them.

2.1 How Multilayer Perceptrons Work

A multilayer perceptron consists of a set of input nodes, one or more
sets of hidden nodes, and a set of output nodes, as depicted in figure 2.1.
These nodes are attached to each other through weighted connections; the
weights of these connections are generally adjusted by some sort of
learning algorithm.1

2.1.1 Nodes
Nodes are units that have activation values, which in turn are simply
numbers like 1.0 or 0.5 (see below). Input and output nodes also have
meanings or labels that are assigned by an external programmer. For ex-
ample, in a well-known model presented by Rumelhart and McClelland
(1986a), each input node (simplifying slightly) stands for a different
sequence of three sounds—for example, one node represents the sound
sequence /sli/, another /spi/, and so forth. In McClelland’s (1989)
model of children’s abilities to solve balance-beam problems, particular
nodes stand for (among other things) particular numbers of weights that
could appear on a balance beam.

The meanings of nodes (their labels) play no direct role in the compu-
tation: a network’s computations depend only on the activation values
of nodes and not on the labels of those nodes. But node labels do
nonetheless play an important indirect role, because the nature of the in-
put to the model depends on the labels and the output of a model de-
pends on its input. For example, a model that encodes the word cat in
terms of its component sounds, other things being equal, tends to treat
cat as being similar to words that are similar in sound (such as cab and
chat), whereas a model that encodes the word cat in terms of semantic
features (+animate, +four-legged, and so on) tends to treat cat as being
similar to words that are similar in meaning (such as dog and lion).

In addition to input nodes and output nodes, there are hidden nodes
that represent neither the input nor the output; the purpose of these is
discussed below.

2.1.2 Activation Values
The activation values of input nodes are given by the programmer. If the
input to a given model is something that is furry, the programmer might
“turn on” the node that stands for furriness (that is, set its activation to,
say, 1.0), whereas if the input were something that isn’t furry, the pro-

8 Chapter 2

Figure 2.1
General multilayer-perceptron architecture: Input nodes, hidden nodes, and output nodes
attached to each other by weighted connections.

h2h1

o1 o2 o3 o4

i1 i2 i3 i4

Output nodes

Input nodes

weighted
connections

hidden units

weighted
connections

grammer would “turn off” the furriness node (that is, set its activation
to, say, 0).

The activation values of the inputs are then multiplied by connection
weights that specify how strongly any two nodes are connected to one
another. In the simplest network, a single input node connects to a single
output node. The activation value of the input node is multiplied by the
weight of that connection to calculate the total input to the output node.

The activation value of an output node is calculated as some function
of its total input. For example, an output node’s activation value might
simply be equal to the total activity that feeds it (a linear activation rule),
or it might fire only if the total activity is greater than some threshold (a
binary threshold activation rule). Models with hidden units use a more
complicated sigmoidal activation rule, in which the activity produced by
a given node ranges smoothly between 0 and 1. These possibilities are
illustrated in figure 2.2.

In networks with more than one input node, the total input to a given
node is calculated by taking the sum of activity fed to it by each node.
For example, in a network with two input nodes (A and B) and one out-
put node (C), the total input to the output node C would be found by
adding together the input from A (calculated as the product of the acti-
vation of input node A times the weight of the connection between A
and output node C) and the input from B (calculated as the product of
the activation of node B times the weight of the connection between it
and output node C). The total input to a given node is thus always a
weighted sum of the activation values that feed it.

2.1.3 Localist and Distributed Representations
Some input (and output) representations are localist, and others are dis-
tributed. In localist representations, each input node corresponds to a
specific word or concept. For example, in Elman’s (1990, 1991, 1993) syn-
tax model, each input unit corresponds to a particular word (such as cat
or dog). Likewise, each output unit corresponds to a particular word.
Other localist representational schemes include those in which a given
node corresponds to a particular location in a retinalike visual array
(Munakata, McClelland, Johnson & Siegler, 1997), a letter in a sequence
(Cleeremans, Servan-Schrieber & McClelland, 1989; Elman, 1990), or
a distance along a balance beam from the beam’s fulcrum (Shultz,
Mareschal & Schmidt, 1994).

In distributed representations, any particular input is encoded by
means of a set of simultaneously activated nodes, each of which can
participate in the encoding of more than one distinct input. For example,
in a model of the inflection of the English past tense proposed by Hare,

Multilayer Perceptrons 9

10 Chapter 2

Total input to unit

O
ut

pu
t

A
ct

iv
ity

Total input to unit

O
ut

pu
t

A
ct

iv
ity

Total input to unit

O
ut

pu
t

A
ct

iv
ity

Figure 2.2
Activation functions transform the total input to a node into an activation. Left: A linear
function. Middle: A binary threshold function. Right: A nonlinear sigmoidal activation
function.

Elman, and Daugherty (1995), input features correspond to speech seg-
ments in particular positions: 14 input nodes correspond to 14 possible
onsets (beginnings of syllables), six input nodes correspond to six pos-
sible instantiations of the nucleus (middles of syllables), and 18 input
nodes correspond to 18 possible codas (ends of syllables). The word bid
would be represented by the simultaneous activation of three nodes, the
nodes corresponding to b in the initial position, i in the nucleus position,
and d in the coda position. Each of those nodes would also participate in
the encoding of other inputs. Other distributed representation schemes
include those in which input nodes correspond to phonetic features like
[±voiced] (Plunkett & Marchman, 1993) or semantic features like [±cir-
cle] or [±volitional] (MacWhinney & Leinbach, 1991). (As discussed in
section 2.5, in some models input nodes do not correspond to anything
obviously meaningful.)

2.1.4 Relations between Inputs and Outputs
Any given network architecture can represent a variety of different
relationships between the input and output nodes, depending on the
weights of the connections between units. Consider, for example, the
very simple network shown in figure 2.3. Suppose that we wanted to use
this model to represent the logical function OR, which is true if either or
both of its inputs are true (or turned ‘on’) and false if both inputs are

Multilayer Perceptrons 11

output

input #1 input #2

connection
weight #1

connection
weight #2

Figure 2.3
A two-layer perceptron with two input nodes and one output node.

false. (As in School will close if there is a blizzard or a power outage.) Let’s as-
sume that the input units are turned on (set to 1) if they are true and
turned off (set to 0) if they are false. Let’s also assume that the activation
function of the output node is a binary threshold, such that the node has
an output activation of 1.0 any time the total input to the output node is
equal to or exceeds 1 and an activation value of 0 otherwise.

The total input to the output node is calculated as the sum of (input #1 *
connection weight #1) plus (input #2 * connection weight #2). Given the
assumptions we have made, we can use infinitely many sets of weights.
One set that works is given in figure 2.4, where the weight running from
input node #1 to the output node is 1.0 and the weight running from in-
put node #2 to the output node is (also) 1.0.

In the figure, if input node #1 is turned on and input node #2 is turned
off, then the weighted sum of the inputs to the output unit is (1.0 * 1.0) +
(0.0 * 1.0) = 1.0. Since 1.0 is equal to the threshold, the output unit is
activated. If instead both input node #1 and input node #2 are turned
on, then the weighted sum of the inputs to the output unit is (1.0 * 1.0) +
(1.0 * 1.0) = 2.0, again above the activation threshold of the output
node. In contrast, if both input nodes are turned off, then the weighted
sum of the inputs to the output node is (0 * 1) + (0 * 1) = 0, a value that is
less than the threshold for output activation. The output unit is thus
turned off.

12 Chapter 2

OR

input #1 input #2

connection
weight #1 =

1.0

connection
weight #2 =

1.0

Figure 2.4
A two-layer perceptron that computes the function OR.

Using the same output activation function (a binary threshold of
greater than or equal to one) but a different set of weights, such as those
depicted in figure 2.5, the same network could be used to represent the
logical function AND. Here, the weight running from input node #1 to
the output node is 0.5, and the weight running from input node #2 to the
output node is 0.5. If both input nodes #1 and #2 are turned on, then the
weighted sum of the inputs to the output unit is (0.5 * 1) + (0.5 * 1) = 1.0.
Since 1.0 is equal to the threshold, the output unit is activated. If, instead,
only input node #1 is turned on, then the weighted sum of the input to
the output node is (0.5 * 1) + (0.5 * 0) = 0.5, a value that is less than the
threshold for output activation. Hence the output node is not turned on.

2.1.5 The Need for Hidden Units
Although functions like AND and OR are easily represented in simple
two-layer networks, many other functions cannot be represented so eas-
ily. For example, our simple network could not represent the function of
exclusive or (XOR), which is true only if exactly one input is true. (You can
have either the cake or the ice cream but not both.)

Simple functions like logical AND and logical OR are said to be
linearly separable because, as illustrated in figure 2.6, we can draw a
straight line that divides the inputs that lead to a true output from the
inputs that lead to a false output.

Multilayer Perceptrons 13

AND

input #1 input #2

connection
weight #1 =

0.5

connection
weight #2 =

0.5

Figure 2.5
A two-layer perceptron that computes the function AND.

But as shown in figure 2.7, if we draw the corresponding plot for XOR,
no simple line will divide the true cases from the false cases. Functions
in which the true cases cannot be separated from the false cases with a
single straight line are not linearly separable. It turns out that in such
cases no set of weights will do; we simply cannot represent functions
like XOR in our simple network (Minsky & Papert, 1969).

As Minsky and Papert (1988) noted, we can get around this problem
in an unsatisfying way by customizing our input nodes in ways that
build in the function that we are trying to represent. Similarly, we can
customize our output function in question-begging ways. For example,

14 Chapter 2

Input 1

0

0.5

1

0 0.5 1

True

False

False

False

AND
In

pu
t 2

Input 1

0

0.5

1

0 0.5 1

True

False

True

True

OR

In
pu

t 2

Figure 2.6
Illustrations of the logical functions OR and AND. The axes of these graphs correspond to
the values of the input units; each input can be thought of as a point in that space. The la-
bels true and false indicate the expected outputs corresponding to some sample inputs. The
heavy lines show possible ways of dividing the true cases from the false cases.

if we connect both inputs to the output with weights of 1, we can stip-
ulate that the output node will turn on only if the weighted sum of its
input equals exactly 1. But such an activation function—known as non-
monotonic because it goes up but then comes back down—essentially
builds XOR into the output function. As a consequence, few if any re-
searchers take such an explanation of XOR to be satisfying.

But there is another way of capturing functions that are not linearly
separable—without having to rely on either dubious input-encoding
schemes or question-begging output-activation functions. Assuming
that we stick to our binary threshold of 1, we can readily represent XOR
in our network—simply by incorporating hidden units. One way to do
so, using two hidden units,2 is shown in figure 2.8, with values of the
hidden units and output unit, for selected input values, given in table
2.1. In effect, the hidden units, which I call h1 and h2, serve as interme-
diate states in the computation: O = (h1 * –1.0) + (h2 * 1.0), where h1 = ((0.5
* input 1) + (0.5 * input 2)) and h2 = ((1.0 * input 1) + (1.0 * input 2)).

In our simple example, the meanings of the hidden units are easy to
understand. For example, hidden unit h1 effectively computes the logi-
cal AND of input 1 and input 2, and h2 effectively computes the logical
OR of input 1 and input 2. (The output subtracts the value of h1’s OR
from the value of h2’s AND.)

In more complex models, it is sometimes transparent what a given
hidden node computes. In a model in which the inputs are words, one
hidden unit might be strongly connected to input words that are nouns,
while another might be strongly connected to input words that are
verbs. In other cases what a given hidden unit is doing may be far less

Multilayer Perceptrons 15

0

0.5

1

0 1

False

True

True

False

XOR

Input 1

In
pu

t 2

0.5

0.5

Figure 2.7
The exclusive or (XOR) function. No straight line can separate inputs that yield true from
the inputs that yield false.

transparent, but it is important to bear in mind that all hidden units ever
do is apply their activation functions to the weighted sums of their in-
puts; to a first approximation, they compute (weighted) combinations of
their inputs.

Sometimes hidden units are thought of as recoding the inputs. For ex-
ample, in our exclusive or model, one hidden unit recodes the raw in-
puts by taking their logical AND, while the other hidden unit recodes
the raw inputs by taking their logical OR. In this sense, the hidden units
serve as re-presentations or internal representations of the input. Since the

16 Chapter 2

Table 2.1
Activation values of units in an exclusive or (XOR) network (see figure 2.8).

Output Output
Input to from Input to from Input to
hidden hidden hidden hidden output

Input 1 Input 2 unit 1 unit 1 unit 2 unit 2 unit Output

F = 0 F = 0 0 0 0 0 0 0
F = 0 T = 1 0.5 0 1 1 1 1
T = 1 F = 0 0.5 0 1 1 1 1
T = 1 T = 1 1 1 2 1 0 0

input 1 input 2

1.0

1.0–1.0

1.0
0.5

0.5

hidden unit
1

hidden unit
2

output

Figure 2.8
A network that represents exclusive or (XOR). All units turn on only if the weighted sum
of their inputs is greater than or equal to 1. Thin solid lines indicate positive activation,
dotted lines indicate negative activation, and thick lines indicate positive activation with
strong absolute values.

output nodes are typically fed only by the hidden units, these internal
representations assume a great importance. For example, in the XOR
model the output units do their work by combing the ANDs and ORs
produced by the hidden units rather than by directly combining the raw
input. Because the behavior of hidden nodes depends on how they are
connected to the input nodes, we can sometimes tell something about
how a given network parcels up a particular problem by understanding
what its hidden units are doing.

2.1.6 Learning
Perhaps the most interesting aspect of these models is that the con-
nection weights need not be set by hand or fixed in advance. Most mod-
els are born with their weights initially set to random values.3 These
weights are then adjusted by a learning algorithm on the basis of a series
of training examples that pair inputs with targets. The two most common
algorithms are the Hebbian algorithm and a version of the delta rule known
as back-propagation.

The Hebbian algorithm The Hebbian algorithm, named for a suggestion
by D. O. Hebb (1949), strengthens the connection weights between input
node A and output node B by a fixed amount each time both are active
simultaneously, a process sometimes described by the slogan “cells that
fire together, wire together.” A somewhat more complex version of the
Hebbian algorithm adjusts the weight of the connection between nodes
A and B by an amount proportionate to their product (McClelland,
Rumelhart & Hinton, 1986, p. 36). In that version, if the product of the
activation of node A multiplied by the activation of node B is positive,
the connection between them is strengthened, whereas if that product is
negative, the connection between nodes A and B is weakened.

The delta rule The delta rule changes the weights of the connection be-
tween input node A and output node B in proportion to the activation of
input node A multiplied by the difference between what output node B actu-
ally produces and the target for output node B. In a formula:

∆wio = η* (targeto – observedo) ai,

where ∆wio is the change in the weight of the connection that runs from
input node i to output node o, η is the learning rate, targeto is the target
for node o, observedo is the actual activation value of node o, and ai is the
activation value for input i.

Back-propagation One cannot directly apply the delta rule to networks
that have hidden layers—because the targets for hidden nodes are
unknown. The back-propagation algorithm, introduced by Rumelhart,

Multilayer Perceptrons 17

Hinton, and Williams (1986), supplements the delta rule with additional
machinery for estimating “targets” for the hidden units.

Back-propagation receives its name from the fact that the learning al-
gorithm operates in a series of stages that move backward through the
network. In the first stage, the algorithm adjusts the weights of connec-
tions that run from the hidden units to the output units.4 Following the
delta rule, each connection that runs from a hidden node h to an output
node o is adjusted as a function of the product of the activation value of
hidden node h and a measure of error for output node o, all scaled by the
parameter called the learning rate (discussed below).5

The second stage begins after all the connections from hidden nodes
to output nodes have been adjusted. At this point, using a process of the
sort that is sometimes called blame-assignment, the algorithm computes
the extent to which each hidden node has contributed to the overall er-
ror. The connection weights from a given input node i to a given hidden
node h are adjusted by multiplying the activation value of i times the
blame score for h, scaled by the value of the learning rate (a parameter that
is discussed in the next section). The way in which back-propagation ad-
justs the connection weights that feed hidden nodes is thus very much
analogous to the way in which the delta rule adjusts connection weights
that feed output nodes, but with the blame-assignment score substitut-
ing for the difference between target and observed values.

The equations are as follows. Connections from hidden unit h to out-
put node o are adjusted by ∆who , where

∆who = ηδoah

and

δo = (to – ao)ao(1 – ao)

Connections from input unit i to hidden node h are adjusted by ∆wih,
where

∆wih = ηδhai

and

δh = ah (1 – ah)∑k
δkwkh.

Algorithms like back-propagation are known as gradient-descent algo-
rithms. To understand this metaphor, imagine that after each trial we
calculate the difference between the target and the observed output (that
is, the output that the model actually produces). This difference, a mea-
sure of error, could be thought of as a point on a hilly terrain: the object
is to find the lowest point (the solution with the smallest overall error).

18 Chapter 2

An inherent risk is that if we use an algorithm that is not omniscient
we could get stuck in a local minimum (see figure 2.9). A local minimum
is a place from which no small step that we can take will immediately
lead to a better solution.

In simple tasks, networks trained with back-propagation typically
reach an adequate solution, even if that solution is not perfect. It is more
controversial whether these algorithms are adequate in more complex
tasks (for further discussion of the issue of local minima, see Rumelhart,
Hinton & Williams, 1986; Tesauro & Janssens, 1988).

2.1.7 Learning Rate
Learning algorithms such as back-propagation use a parameter known
as learning rate, a constant that is multiplied by the error signal and node
activations. In most models, the learning rate is relatively small, leading
to learning that is necessarily gradual. The two principled reasons that
learning rates tend to be small are both nicely explained by McClelland,
McNaughton, and O’Reilly (1995, p. 437):

Accuracy of measurement will increase with sample size, and
smaller learning rates increase the effective sample size by basi-
cally using the network to take a running average over a larger
number of recent examples.

Gradient descent procedures . . . are guaranteed to lead to an im-
provement, but only if infinitesimally small adjustments are made to
the connectionist weights at each step. . . . After each pass through
the training set, the weights can be changed only a little; otherwise,
changes to some weights will undermine the effects of changes to the

Multilayer Perceptrons 19

Local minima

Figure 2.9
The hill-climbing metaphor. Arrows point to locations where error is low and small steps
would lead only to greater error.

others, and the weights will tend to oscillate back and forth. With
small changes, on the other hand, the network progresses a little af-
ter each pass through the training corpus.

2.1.8 Supervision
Because models that are trained by back-propagation require an exter-
nal teacher, they are said to be supervised.6 An obvious question that
arises with respect to any supervised model is, Where does the teacher
or supervisor come from? Some critics of the multilayer-perceptron ap-
proach would like to dismiss all supervised models on the basis of the
implausibility of the supervisor, but such wholesale criticism is unfair.
Some models do depend on a teaching signal that is not plausibly avail-
able in the environment, but in other cases the teaching signal may be a
piece of information that is plausibly available in the environment. For
example, in the sentence-prediction network that is described below, the
input to the model is a word in a sentence, and the target is simply the
next word in that sentence. It does not seem unreasonable to suppose
that a learner has access to such readily available information. The ques-
tion of whether the teacher is plausible must be raised separately for
each supervised model.

2.1.9 Two Types of Multilayer Perceptrons
All the examples that I have discussed so far are called feedforward networks
because activation flows forward from the input nodes through the hid-
den nodes to the output nodes. A variation on the feedforward network is
another type of model known as the simple recurrent network (SRN) (El-
man, 1990), itself a variation on an architecture introduced earlier by Jor-
dan (1986). Simple recurrent networks differ from feedforward networks
in that they have one or more additional layers of nodes, known as con-
text units, which consist of units that are fed by the hidden layer but that
also feed back into the (main) hidden layer (see figure 2.10). The advan-
tage of these more complex models, as is made clear later in this chapter,
is that, unlike feedforward networks, simple recurrent networks can learn
something about sequences of elements presented over time.

2.2 Examples

The vast majority of the connectionist models that have been used in
discussions of cognitive science are multilayer perceptrons, either feed-
forward networks or simple recurrent networks. Among the many do-
mains in which such models have been used are the acquisition of
linguistic inflection (e.g., Rumelhart & McClelland, 1986a), the acquisi-

20 Chapter 2

tion of grammatical knowledge (Elman, 1990), the development of ob-
ject permanence (Mareschal, Plunkett & Harris, 1995; Munakata, Mc-
Clelland, Johnson & Siegler, 1997), categorization (Gluck & Bower, 1988;
Plunkett, Sinha, Møller & Strandsby, 1992; Quinn & Johnson, 1996),
reading (Seidenberg & McClelland, 1989), logical deduction (Bechtel,
1994), the “balance beam problem” (McClelland, 1989; Shultz, Mare-
schal & Schmidt, 1994), and the Piagetian stick-sorting task known as
seriation (Mareschal & Shultz, 1993). This list is by no means compre-
hensive; many more examples can be found in books, journals, and con-
ference proceedings. In this section I focus on two particular examples
that are well known and that exemplify the two major classes of mul-
tilayer perceptrons—feedforward networks and simple recurrent net-
works. Each of these examples has played a pivotal role in discussions
about the implications of connectionism for symbol-manipulation.

2.2.1 The Family-Tree Model: A Feedforward Network
The family-tree model, described by Hinton (1986), was designed to
learn about the kinship relations in the two family trees depicted in
figure 2.11. These two family trees are isomorphic, which is to say that
they map onto one another perfectly; each family member in one family
tree corresponds to a family member in the other family tree.

The model itself, depicted in figure 2.12, is a multilayer perceptron,
with activation flowing strictly from input nodes through the output

Multilayer Perceptrons 21

context layer

hidden units

input units

output units

hidden units

input units

output units

Figure 2.10
A feedforward network (left) and a simple recurrent network (right).

nodes. Particular facts are encoded as input pairs. Each input node in
the model encodes either one of the 24 individuals depicted in the two
family trees or one of 12 familial relationships (father, mother, husband,
wife, son, daughter, uncle, aunt, brother, sister, nephew, and niece). Output
nodes represent particular individuals. Given the 12 possible familial
relationships that are encoded by the relationship input units and given
the two family trees that Hinton used, there are a total of 104 possible
facts of the form X is the Y of Z, such as Penny is the mother of Victoria and
Arthur.

Initially, the model’s weights were randomized. At this point, the
model responded randomly to terms such as father, daughter, and sister
and did not know any specific facts, such as which people were the chil-
dren of Penelope. But through the application of back-propagation,7 the
model gradually learned specific facts. Hinton argued that the model
learned something about the kinship terms (father, daughter, and so on)
on which it is trained. (I challenge Hinton’s argument in chapter 3.)

Rather than training the model on all 104 of these facts, Hinton left
four facts in reserve for testing. In particular, he conducted two test runs

22 Chapter 2

Andrew

CharlesJamesVictoria

CharlotteColin

Penelope

ArthurMargaret

Christopher Christine= =

= = =Jennifer

Pierro

TomasoMarcoLucia

SophiaAlfonso

Maria

EmilioGina

Roberto Francesca= =

= = =Angela

Figure 2.11
The two isomorphic family trees used in Hinton (1986). The symbol = indicates the mean-
ing married to. For example, Penelope is married to Christopher and is the mother of
Arthur and Victoria.

of this model, each time training the model on exactly 100 of the 104
possible facts. The test runs differed from each other in the set of initial
random weights that were used; the two test runs might be thought of
as roughly analogous to two different experimental subjects. On one test
run, the model got all four test cases correct, and on the second test run
it got three of four correct, both times showing at least some ability to
generalize to novel cases.

Part of what makes the model interesting is that the hidden units ap-
pear to capture notions such as “which generation a person belongs to
. . . [and] which branch of the family a person belongs to” that are not
explicitly encoded in the input. McClelland (1995, p. 137) took Hinton’s
model to show “that it was possible to learn relations that cannot be
expressed in terms of correlations between given variables. What . . .

Multilayer Perceptrons 23

Figure 2.12
Hinton’s (1986) family-tree model. Circles indicate units; squares indicate sets of units. Not
all units or all connections are shown. Inputs to the model are indicated by activating one
agent unit and one relationship unit. The set of patients corresponding to that agent and
relationship are activated within the output bank. All activation flows forward, from the
input to the output.

Hidden layer
 (many units)

Outputs

Distributed encoding of
agent (several units)

Victoria Penny etc.Andrew Arthur sister mother etc.brother wife

Victoria Penny etc.Andrew Arthur

InputsAgent Relationship

Distributed encoding of
agent (several units)

Distributed encoding of
output (several units)

[the] network did was discover new variables into which the given var-
iables must be translated.” Similarly, Randall O’Reilly (personal com-
munication, February 6, 1997) argued that Hinton’s “network developed
(through learning with backprop) abstract internal representations in
the ‘encoding’ hidden layers and then, in a subsequent layer, encoded re-
lationship information in terms of these abstracted internal representa-
tions.”

2.2.2 The Sentence-Prediction Model: A Simple Recurrent Network
Another important and influential multilayer perceptron, in this case
a simple recurrent network rather than a feedforward network, is the
sentence-prediction model, as described by Elman (1990, 1991, 1993). A
simplified version of the sentence-prediction model is given here, in
figure 2.13. The model is much like a standard feedforward network, but
as I indicated earlier, it is supplemented with a context layer that records
a copy of the state of the hidden layer. This context layer feeds back into

24 Chapter 2

n Hidden units

Outputs

Inputs

n Context units

cats dogs chases ...cat dog chase

cats dogs chases ...cat dog chase

Figure 2.13
A simplified version of Elman’s (1990, 1990, 1993) sentence-prediction model. Circles (in-
put nodes and output nodes) represent particular words; The input to the model is pre-
sented with a single word at each time step; the target is the next word in that sequence.
Rectangles contain sets of units. Each hidden unit projects to one context unit with a fixed
weight of 1.0. Each context unit feeds into every hidden unit, with modifiable connection
weights. Elman’s model has 26 input nodes and 26 output nodes.

the hidden layer at the next time step. At any given point, the activation
levels of the hidden units depend not only on the activation of the input
units but also on the state of these context units. In this way, the units in
the context layer serve as a sort of memory of the model’s history.

The sentence-prediction model was trained on a series of sentences
taken from a semi-realistic artificial grammar that included 23 words
and a variety of grammatical dependencies such as subject-verb agree-
ment (cats love and cat loves) and multiple embeddings. At each time
step, the input to the model is the current word (indicated by the activa-
tion of some node), and the target output is the next word in the current
sentence.

The weights of the model (except the weights from the hidden unit to
the context layer, which are fixed) were adjusted by the back-propagation
algorithm. Once trained, the model was often able to predict plausible
continuations for strings such as cats chase dogs and even more compli-
cated strings such as boys who chase dogs see girls—without any explicit
grammatical rules. For this reason, the simple recurrent network has
been taken as strong evidence that connectionist models might obviate
the need for grammatical rules. For example, P. M. Churchland (1995,
p. 143) writes that

The productivity of this network is of course a feeble subset of the
vast capacity that any normal English speaker commands. But pro-
ductivity is productivity, and evidently a recurrent network can
possess it. Elman’s striking demonstration hardly settles the issue
between the rule-centered approach to grammar and the network
approach. That will be some time in working itself out. But the con-
flict is now an even one. I’ve made no secret where my own bets
will be placed.

Churchland is not alone in his enthusiasm. According to a survey of
citations in the span 1990 to 1994 (Pendlebury, 1996), Elman’s (1990)
discussion of the simple recurrent network was the most widely cited
paper in psycholinguistics and the eleventh most cited paper in
psychology.

2.3 How Multilayer Perceptrons Have Figured in Discussions of Cognitive
Architecture

The idea that connectionist networks might offer an alternative to
symbol-manipulation started to become prominent when J. A. Ander-
son and Hinton (1981, pp. 30–31) wrote that “[w]hat we are asserting
is that the symbol-processing metaphor may be an inappropriate way

Multilayer Perceptrons 25

of thinking about computational processes that underlie abilities like
learning, perception, and motor skills. . . . There are alternative models
that have different computational flavor and that appear to be more
appropriate for machines like the brain, which are composed of mul-
tiple simple units that compute in parallel.” The idea became even more
prominent in 1986 with the publication of an influential paper by
Rumelhart and McClelland (1986a). Rumelhart and McClelland pre-
sented a two-layer perceptron that captures certain aspects of children’s
acquisition of the English past tense. They suggest that their model can
“provide a distinct alternative to . . . [rules] in any explicit sense” (for
discussion, see section 3.5). Elsewhere in the same book, Rumelhart and
McClelland (1986b, p. 119) clearly distance themselves from those who
would explore connectionist implementations of symbol-manipulation
when they write, “We have not dwelt on PDP implementations of Tur-
ing machines and recursive processing engines [canonical machines for
symbol-manipulation] because we do not agree with those who would
argue that such capabilities are of the essence of human computation.”

Similarly, Bates and Elman (1993, p. 637) suggest that their particular
connectionist approach “runs directly counter to the tendency in tradi-
tional cognitive and linguistic research to seek ‘the rule’ or ‘the gram-
mar’ that underlies a set of behavioral regularities. . . . [These systems]
do not look like anything we have ever seen before.” And Seidenberg
(1997, p. 1600) writes that the kind of network he advocates “incorp-
orates a novel form of knowledge representation that provides an
alternative to equating knowledge of a language with a grammar. . . .
Such networks do not directly incorporate or implement traditional
grammars.”

Still, although such claims have received a great deal of attention, not
everyone who advocates multilayer perceptrons denies that symbol-
manipulation plays a role in cognition. A somewhat weaker but com-
monly adopted view holds that symbol-manipulation exists but plays a
relatively small role in cognition. For example, Touretzky and Hinton
(1988, pp. 423–424) suggest that there is an important role for connec-
tionist alternatives to symbol-manipulation: “many phenomena which
appear to require explicit rules can be handled by using connection
strengths.” But at the same time they allow for connectionist models that
implement rules, when they write that “we do not believe that [the fact
the some phenomena can be handled without rules] . . . removes the
need for a more explicit representation of rules in tasks that more closely
resemble serial, deliberate reasoning. A person can be told an explicit
rule such as ‘i before e except after c’ and can then apply this rule to the
relevant cases.”

26 Chapter 2

2.4 The Appeal of Multilayer Perceptrons

Whether multilayer perceptrons turn out to be the best account of all of
cognition, of some of it, or of none of it, it is clear that they have attracted
a great deal of attention. As Paul Smolensky wrote in 1988 (p. 1), “The
connectionist approach to cognitive modeling has grown from an ob-
scure cult claiming a few true believers to a movement so vigorous that
recent meetings of the Cognitive Science Society have begun to look like
connectionist pep rallies.”

Why have so many people focused on these models? It is not because
the models have been shown to be demonstrably better at capturing lan-
guage and cognition than alternative models. Most discussions of par-
ticular models present those models as being plausible alternatives, but
with the possible exception of models of certain aspects of reading, few
models have been presented as being uniquely able to account for a given
domain of data. As Seidenberg (1997, p. 1602) puts it, “The approach is
new and there are as yet few solid results in hand.”

2.4.1 Preliminary Theoretical Considerations
The argument for eliminating symbol-manipulation thus rests not so
much on empirical arguments against symbol-manipulation in par-
ticular domains but instead primarily on what one might think of as
preliminary theoretical considerations. One reason that multilayer per-
ceptrons seem especially attractive is that they strike some scholars as
being more “more compatible than symbolic models with what we
know of the nervous system” (Bechtel & Abrahamsen, 1991, p. 56).
Nodes, after all, are loosely modeled on neurons, and the connections
between nodes are loosely modeled on synapses. Conversely, symbol-
manipulation models do not, on their surface, look much like brains,
and so it is natural to think of the multilayer perceptrons as perhaps be-
ing more fruitful ways of understanding the connection between brain
and cognition.

A different reason for favoring multilayer perceptrons is that they
have been shown to be able to represent a very broad range of functions.
Early work on connectionism virtually died out with Minsky and
Papert’s (1969) proof of limitations on networks that lacked hidden
layers; advocates of the newer generation of models take heart in the
broader representational abilities of the newer models. For example,
P. M. Churchland (1990) has called multilayer perceptrons “universal
function approximators” (see also Mareschal and Shultz, 1996). A func-
tion approximator is a device that takes a set of known points and inter-
polates or extrapolates to unknown points. For instance, a device that
maps between motor space (a space defined in terms of forces and joint

Multilayer Perceptrons 27

angles) and visual space can be thought of as learning a function; like-
wise, the mapping between the stem of a verb and its past tense can be
thought of as a function. For virtually any given function one might
want to represent, there exists some multilayer perceptron with some
configuration of nodes and weights that can approximate it (see Hadley,
2000).

Still others favor multilayer perceptrons because they appear to re-
quire relatively little in the way of innate structure. For researchers
drawn to views in which a child enters the world with relatively little ini-
tial structure, multilayer perceptrons offer a way of making their view
computationally explicit. Elman et al. (1996, p. 115), for instance, see
multilayer perceptron models as providing a way to “simulate develop-
mental phenomena in new and . . . exciting ways . . . [that] show how
domain-specific representations can emerge from domain-general ar-
chitectures and learning algorithms and how these can ultimately result
in a process of modularization as the end product of development rather
than its starting point.”

Multilayer perceptrons are also appealing because of their intrinsic
ability to learn (Bates & Elman, 1993) and because of their ability to
gracefully degrade: they can tolerate limited amounts of noise or damage
without dramatic breakdowns (Rumelhart & McClelland, 1986b, p. 134).
Still others find multilayer perceptrons to be more parsimonious than
their symbolic counterparts. For example, multilayer perceptron ac-
counts of how children inflect the English past tense hold that children
use the same mechanism for inflecting both irregular (sing-sang) and
regular (walk-walked) inflection, whereas rule-based accounts must in-
clude at least two mechanisms, one for regular inflection and another for
exceptions to the rule. (For further discussion of models of inflection, see
section 3.5.)

2.4.2 Evaluation of Preliminary Considerations
None of the preliminary considerations that apparently favor multilayer
perceptrons—biological plausibility, universal function approximation,
and the like—is actually decisive. Instead, as is often the case in science,
preliminary considerations do not suffice to settle scientific questions.
For example, although multilayer perceptrons can approximate a broad
range of functions (e.g., Hornik, Stinchcombe & White, 1989), it is not
clear that the range is broad enough. Hadley (2000) argues that these
models cannot capture a class of functions (known as the partial recur-
sive functions) that some have argued capture the computational prop-
erties of human languages.

Whether or not these models can in principle capture a broad enough
range of functions, the proofs of Hornik, Stinchcombe, and White apply

28 Chapter 2

only to networks that have an arbitrary number of hidden nodes. Such
proofs do not show that a particular network with fixed resources (say, a
three-layer network with 50 input nodes, 30 hidden nodes, and 50 out-
put nodes) can approximate any given function. Rather, these kinds of
proofs show that for every function within some very broad class there
exists some connectionist model that can model that function—perhaps
a different model for each function. Furthermore, the proofs do not
guarantee that any particular network can learn that particular function
given realistic numbers of training examples or with realistic numbers
of hidden units. They in no way guarantee that multilayer perceptrons
can generalize from limited data in the way that humans do. (For ex-
ample, we will see in chapter 3 that even though all multilayer percep-
trons can represent the “identity” function, in some cases they cannot
learn it.) In any case, all this talk of universal function approximators
may be moot. Neither the brain nor any actually instantiated network
can literally be a universal function approximator, since the ability to ap-
proximate any function depends (unrealistically) on having infinite re-
sources available.8 Finally, just as one can build some multilayer network
to approximate any function, one can build some symbol-manipulating
device to approximate any function.9 Talk about universal function ap-
proximation is thus a red herring that does not actually distinguish be-
tween multilayer perceptrons and symbol-manipulation.

Similarly, at least for now, considerations of biological plausibility
cannot choose between connectionist models that implement symbol-
manipulation and connectionist models that eliminate symbol-
manipulation. First, the argument that multilayer perceptrons are
biologically plausible turns out to be weak. Back-propagating multi-
layer perceptrons lack brainlike structure and differentiation (Hubel,
1988) and require synapses that can vary between being excitatory and
inhibitory, whereas actual synapses cannot so vary (Crick & Asunama,
1986; Smolensky, 1988). Second, the ways in which multilayer percep-
trons are brainlike (such as the fact that they consist of multiple units
that operate in parallel) hold equally for many connectionist models
that are consistent with symbol-manipulation, such as the temporal-
synchrony framework (discussed in chapters 4 and 5) or arrays of
McCulloch-Pitts neurons arranged into logic gates.

The flip side of biological plausibility is biological implausibility.
Some people have argued against symbol-manipulation on the grounds
that we do not know how to implement it in the brain (e.g., Harpaz,
1996). But one could equally argue that we do not know how to imple-
ment back-propagation in the brain. Claims of biological implausibility
are most often merely appeals to ignorance that can easily mislead. For
example, we do not yet know exactly how the brain encodes short-term

Multilayer Perceptrons 29

memory, but it would be a mistake to conclude that the psychological
process of short-term memory is “biologically implausible” (Gallistel,
1994). Connectionism should not be in the business of sticking slavishly
to what is know about biology, since so little is known. As Elman et al.
(1996, p. 105) put it, “There is obviously a great deal which remains un-
known about the nervous system and one would not want modeling to
always remain several paces behind the current state of the science.” For
now, then, considerations about biological plausibility and biological
implausibility are simply too weak to choose between models.10 In short,
there is no guarantee that the right answer to the question of how cog-
nition is implemented in the neural substrate will be one that appears to
our contemporary eyes to be “biologically plausible.” We must not con-
fuse what currently seems biologically plausible with what actually
turns out to be biologically real.

The other preliminary considerations are likewise not adequate for
choosing between architectures. For example, neither the ability to learn
nor the ability to degrade gracefully is unique to multilayer perceptrons.
Modeling learning is a core focus of canonical symbolic models of cog-
nition such as SOAR (Newell, 1990) and models of grammar learning
such as those described by Pinker (1984). And while some symbolic sys-
tems are not robust with respect to degraded input, others are (Fodor &
Pylyshyn, 1988). For example, Barnden (1992b) describes a symbolic
analogy-based reasoning system that is robust to partial input. A variety
of symbol-manipulating mechanisms can recover from degraded input,
ranging from error-correction algorithms that check the accuracy of
transmitted information to systems that seek items that share a subset of
attributes with some target. Whether these mechanisms are adequate to
account for the ability of humans to recover from degraded input re-
mains to be seen; for now, there is little in the way of relevant empiri-
cal data.

Another question that is logically independent of the distinction be-
tween connectionist models that would and would not implement
symbol-manipulation is the question of whether the mind contains a
great deal of innate structure. Although multilayer perceptrons typically
have relatively little innate structure, it is possible in principle to pre-
specify their connection weights (for an example of a system in which
connection weights are in fact to some extent prespecified, see Nolfi,
Elman & Parisi, 1994). Similarly, although many symbol-manipulating
models have a great deal of innate structure, not all do (e.g., Newell,
1990).

Finally, although it is true that one could argue that multilayer per-
ceptrons are more parsimonious than symbolic models, one could
equally argue that they are less parsimonious. As McCloskey (1991)

30 Chapter 2

notes, one could argue that networks with thousands of connection
weights have thousands of free parameters. Because biological systems
are clearly complex, constraining ourselves a priori to just a few mecha-
nisms may not be wise. As Francis Crick (1988, p. 138) puts it, “While
Occam’s razor is a useful tool in physics, it can be very a dangerous im-
plement in biology.” In any case, parsimony chooses only between mod-
els that adequately cover the data. Since we currently lack such models,
applying parsimony is for now premature.

In short, none of these preliminary considerations forces us to ac-
cept—or reject—multilayer perceptrons. Since they can be neither ac-
cepted or rejected at this point, it is now time that we begin to evaluate
them on other grounds. We must also begin to confront the thorny ques-
tion of whether multilayer perceptrons serve as implementations of or
alternatives to symbol-manipulation, a question that turns out to be
more difficult than it first appears.

2.5 Symbols, Symbol-Manipulators, and Multilayer Perceptrons

First, though, before we examine what I think truly distinguishes multi-
layer perceptrons from symbol-manipulation, it is important to clear up
a red herring. A number of people seem to think that a key difference be-
tween multilayer perceptrons and symbol-manipulators is that the latter
make use of symbols but the former do not. For example, Paul Church-
land (1990, p. 227) seems to suggest this when he writes

An individual’s overall-theory-of-the-world, we might venture, is
not a large collection or a long list of stored symbolic items. Rather,
it is a specific point in that individual’s synaptic weight space. It is
a configuration of the connection weights, a configuration that
partitions the system’s activation-vector space(s) into useful divi-
sions and subdivisions relative to the inputs typically fed to the
system.

Book titles like Connections and Symbols (Pinker & Mehler, 1988) seem
to further this impression. But what I want to do in this brief section is
to persuade you that it is not terribly valuable to think of the difference
between competing accounts of cognitive architecture as hinging on
whether the mind represents symbols.

The trouble is that there are too many different ways of defining what
is meant by a symbol. It is certainly possible to define the term symbol in
a way that means that symbol-manipulators have them and multilayer
perceptrons do not, but it is just as easy to define the term in a way that
entails that both symbol-manipulators and multilayer perceptrons have
them. It might even be possible to define the term in such a way that

Multilayer Perceptrons 31

neither classical artificial intelligence (AI) programs (which are usually
taken to be symbol-manipulators) nor multilayer perceptrons have them
(for further discussion of this latter possibility, see Searle, 1992).

On pretty much anyone’s view, to be a symbol is, in part, to be a rep-
resentation. For example, the word cats as it appears on this page is a
symbol in the external world that stands for cats. (More precisely, either
for cats in the world or the idea of cats; this is not the place to worry
about that sort of concern). Advocates of symbol-manipulation assume
that there is something analogous to external symbols (words, stop
signs, and the like) inside the head. In other words, they assume that
there are mental entities—patterns of matter or energy inside the head—
that represent either things in the world or mental states, concepts or
categories.

If all it took to be a symbol was to be a mental representation, prob-
ably all modern researchers would agree that there were symbols.
Hardly anyone since Skinner has doubted that there are mental repre-
sentations of one sort or another. What might be less obvious is that ad-
vocates of multilayer perceptrons are committed to at least one of the
sorts of mental representations that is often taken to be symbolic: the
representation of categories or equivalence classes.

A programmer building a classical AI model might assign a particu-
lar pattern of binary bits to represent the idea of a cat; a programmer
building a multilayer perceptron might assign a particular node to rep-
resent the idea of a cat. In both approaches, the representation of cat is
context-independent: every time the computer simulation—whether a
classical AI model or a multilayer perceptron model—is representing
cat, it does the same thing. With respect to such an encoding, all cats are
represented equivalently.

There has been some confusion in the literature on this point. For ex-
ample, people have talked about Elman’s sentence-prediction model as
if it had context-dependent representations of its input words. But in
fact, the input nodes are context-independent (the word cat always turns
on the same node regardless of where in a sentence it appears), and
the hidden nodes do not truly represent individual words; instead, the
hidden units represent sentence fragments. So it’s not that cat is repre-
sented differently by the hidden units in the sentence cats chase mice as
opposed to the sentence I love cats. It’s that those two particular sentence
fragments happen to elicit different patterns of hidden unity activity. The
only representation of cat per se is the activation of the input unit cat,
and that activation is context-independent. A more general version of
the suggestion about Elman’s model is Smolensky’s (1988, 1991) claim
that connectionist “subsymbols” are context-dependent, but Smolensky
never spells out exactly how this works. The actual examples he gives of

32 Chapter 2

representations are invariably grounded in lower-level features that are
themselves context-independent. For example, cup of coffee is grounded
in context-independent features like +porcelain-curved-surface. Hence
the subsymbol-symbol distinction seems to be a distinction without a
difference.

Also often mentioned in these sorts of discussions is the distributed-
versus-localist distinction. A great many people have made it seem that
multilayer perceptrons are special because they make use of distributed
representations. For example, instead of representing cat with a single
node, cat might be represented by a set of nodes like +furry, +four-
legged, +whiskered, and the like. But not all multilayer perceptrons use
distributed representations. Elman’s sentence-prediction model for ex-
ample, uses a single node for each distinct word that it represents. More-
over, not all symbol-manipulators use localist representations. For
example, digital computers are canonical symbol-manipulators, and
some of their most canonical symbols are distributed encodings. In the
widely adopted ASCII code, every instance of the capital letter A is rep-
resented by one set of 1s and 0s (that is, 01000001), and every instance of
the capital letter B by a different set of 1s and 0s (that is, 01000010).11 As
Pinker and Prince (1988) point out, distributed phonological represen-
tations are the hallmark of generative phonology (e.g., Chomsky &
Halle, 1968).

My point is that attempts to differentiate multilayer perceptrons
from symbol-manipulators cannot rest on questions such as whether
there are context-independent mental representations of categories or
whether mental representations are distributed. Indeed, one might
argue that we ought to look elsewhere in trying to differentiate multi-
layer perceptrons and symbol-manipulators. For example, for Vera and
Simon (1994, p. 360), multilayer “connectionist systems certainly differ
in important respects from ‘classical’ [symbol-manipulating] simula-
tions of human cognition . . . [but] symbolic-nonsymbolic is not one of
the dimensions of this difference.”

But Vera and Simon’s view is not the only possible view. Others argue
that symbolhood rests on far more than the ability to represent context-
independent categories. For example, one view is that something can be
a symbol only if it can appear in a rule (e.g., Kosslyn & Hatfield, 1984).
Another view is that a symbol must be able to participate in certain
kinds of structured representations (e.g., Fodor & Pylyshyn, 1988). And
it seems pretty clear that one might want symbols that stand for partic-
ular individuals (Felix) rather than categories (cats).

My own view is that these cases simply point to a taxonomy of differ-
ent kinds of things that symbols can stand for—namely categories (cats),
variables (x, as in for all x, such that x is category y), computational

Multilayer Perceptrons 33

operations (+, –, concatenate, compare, etc.), and individuals (Felix). To
my mind, a system that can use representations for even one of those
four kinds of things counts as having symbols. After all, any given clas-
sical AI program may use only a subset of those four kinds of represen-
tations. For example, a tic-tac-toe–playing program might not have any
need for structured representations or a difference between kinds and
individuals but might need variables and operations. Since multilayer
perceptrons have context-independent representations of categories, I
count them as having symbols.

Whether or not you agree with my permissive view, it is clear that we
are simply delaying the inevitable. The interesting question is not
whether we want to call a system that has context-independent repre-
sentations of categories symbolic but rather whether the mind is a system
that represents variables, operations over variables, structured repre-
sentations, and a distinction between kinds and individuals.

34 Chapter 2

