Psych 229: Language Acquisition

Lecture 5 Statistics & Words

Discussion Questions

How does statistical learning fit in with the idea of a mental grammar? What about with the idea of innateness? Can experience-independent mechanisms ensure learning by themselves in some situation?

Transitional probability: how does this fit into experience-dependent and experience-independent learning mechanisms?

Gambell & Yang 2006: Computational model of word segmentation Survey of infant strategies (use at 8 months [before word meaning]) Possible strategy: learn from isolated words

Data: 9% of mother-to-child speech is isolated words Problem: How does a child recognize an isolated word as such? length won't work: "I-see" vs. "spaghetti"

Possible strategy: statistical properties like transitional probability between syllables word boundaries postulated at local minima

pre tty ba by

p(tty-->ba) < p(pre-->tty), p(ba-->by)

Question: How well does this fare on real data sets (not artificial stimuli)?

Gambell & Yang 2006: Computational model of word segmentation

Survey of infant strategies (use at 8 months [before word meaning]) Possible strategy: Metrical segmentation strategy

- Children treat stressed syllable as beginning of word
- 90% of English content words are stress-initial
- Problem: Stress systems differ from language to language
- the child would need to know that words are stress initial
 - ... but to do that, the child needs words first
 - ... but to do that, the child needs words first

Possible strategy: phonotactic constraints (sequences of consonant clusters that go together, e.g. str vs. *stl in English); language-specific

- Infants seem to know these by 9 months
- posit boundary at improper sequence break: stl --> st I (first light)
- Problem: May just be syllable boundary (restless)

Gambell & Yang 2006: Computational model of word segmentation

Survey of infant strategies (use at 8 months [before word meaning]) Possible strategy: Memory

- Use previous stored words (sound forms, not meanings) to recognize new words
- if child knows *new*, then can recognize *one* in *thatsanewone*
- Problem: Needs to know words before can use this

A good point: "It seems...only language-independent strategies can set word segmentation in motion before the establishment and application of language-specific strategies"

Gambell & Yang 2006: Computational model of word segmentation

Computational model goal - psychologically plausible learning algorithm

- real data

- real data

Another good point: it's good if the information is in the data, but we also need to know how children could use it

On psychological plausibility

capacity of human learners. For example, the algorithm of leven & Cameright (1996) produces a succession of leatons, each of which is associated with an evaluation metric that is calculated over the entire learning corpus. A powerd optimization algorithm ensures

Start or produce the surger beauses? * As studied to dedgestions of two increases are surgering or based in surgering or the studied or based in the studied or the studied or the studied or studi

Gambell & Yang 2006: Computational model of word segmentation

What happened?

