Psych229:
 Language Acquisition

Lecture 20

Syntax Learning

Similarities: Greenberg's Generalizations
Word Order Generalizations

Navajo

Basic word order: Subject Object Verb

Ashkii at'ééd yiyilltsá
Boy girl saw
The boy saw the girl

Baker (2001)
Complex Systems

1

Japanese
Basic word order: Subject Object Verb

Jareth-ga Hoggle-o butta
Jareth Hoggle hit
Jareth hit Hoggle
Jareth hit Hoggle

Baker (2001)

Complex Systems
Similarities: Greenberg's Generalizations
Word Order Generalizations

Japanes

Basic word order:	Basic word order:
Subject Object Verb	Subject Object Verb
Postpositions: Noun Phrase Postposition	Postpositions: Noun Phrase Postposition
'éé bih náásdzá clothing into l-got-back I got back into (my) clothes.	Jareth-ga Sarah to kuruma da Jareth Sarah with car by London ni itta London to went
	Jareth went to London with Sarah by car.

Baker (2001):
 Complex Systems

Similarities: Greenberg's Generalizations
Word Order Generalizations

Navajo

Basic word order:
Subject Object Verb
Postpositions:
Noun Phrase Postposition
Possessor before Possessed
Possessor Possession

Japanese
Basic word order: Subject Object Verb
ostpositions Noun Phrase Postposition Possessor before Possessed Possessor Possession

Baker (2001)

Complex Systems
Similarities: Greenberg's Generalizations
Word Order Generalizations

English
Basic word order:
Subject Verb Object
Prepositions:
Preposition Noun Phrase
Jareth gave the crystal to Sarah.

Edo (Nigeria)

Basic word order: Subject Verb Object

Prepositions:
Preposition Noun Phrase
Òzó rhié néné ebé né Adésuwá Ozo gave the book to Adesuwa.

Baker (2001) Complex Systems

Similarities: Greenberg's Generalizations
Word Order Generalizations

English
Basic word order:
Subject Verb Object
Prepositions:
Preposition Noun Phrase
Possessed before Possessor Possession Possessor
quest of Sarah
(alternative: Sarah's quest)

Edo (Nigeria)
Basic word order: Subject Verb Object

Prepositions: Preposition Noun Phrase

Possessed before Possessor Possession Possessor

Omo Ozó
child Ozo
Ozo's child

Baker (2001):
 Complex Systems

Similarities: Greenberg's Generalizations
Word Order Generalizations

English

Basic word order:
Subject Verb Objec
Prepositions:
Preposition Noun Phrase
Possessed before Possessor
Possession Possessor

Edo (Nigeria)
Basic word order: Subject Verb Object

Prepositions: Preposition Noun Phrase

Possessed before Possessor Possession Possessor

Baker (2001):

Complex Systems

similarities: Greenberg's Generalizations

Word Order Generalizations
Point: Forty-five "universals" of languages found - patterns overwhelmingly followed by languages with unshared history (Navajo \& Japanese, English \& Edo)

Not all combinations are possible - some patterns rarely appear Ex: Subject Verb Object language (English/Edo-like) + postpositions (Navajo/Japanese-like)

Baker (2001):
Complex Systems
More Similarities \& Differences
French vs. Italian

French	Italian
Subject Verb	Subject Verb
Jareth arrivera.	Jareth verrá.
Jareth will-come.	Jareth will-come

Subject Verb
Jareth verrá. Jareth will-come.

Jareth arrivera
Jareth will-come

Baker (2001)
Complex Systems
More Similarities \& Differences
French vs. Italian

French	Italian
Subject Verb	Subject Verb
*Verb Subject	Verb Subject
**rrivera Jareth.	Verrá Jareth.
*Will-arrive Jareth.	Will-arrive Jareth.

Baker (2001): Complex Systems
More Similarities \& Differences
French vs. Italian

French	Italian
Subject Verb	Subject Verb
*Verb Subject	Verb Subject
	Verb
*Verb	Verrá
He-will-come	He-will-come

Baker (2001): Complex Systems

More Similarities \& Differences
French vs. Italian

French	Italian
Subject Verb	Subject Verb
*Verb Subject	Verb Subject
*Verb	Verb

Embedded Subject-question formation (easy to miss)

Tu veux que Marie épouse Jean. Credi che Jareth verrá You want that Marie marries Jean. You think Jareth will-come.

Qui veux-tu que __épouse Jean? Che credi che _- verra? Who want-you that marries Jean? Who think-you that will-come? Que veux-tu qui épouse Jean?

Baker (2001):
Complex Systems
More Similarities \& Differences
French vs. Italian

French	Italian
Subject Verb	Subject Verb
*Verb Subject	Verb Subject
*Verb	Verb

Embedded Subject-question formation (easy to miss)
*Qui veux-tu que_épouse Jean? Che credi che _ verrá?
Who want-you that marries Jean? Who think-you that will-come?
Que veux-tu qui_épouse Jean?
Expletives
All these involve the subject in some way - coincidence?
Idea: No! Parameter involving the subject.

Baker (2001):
Complex Systems
The Value of Parameters for Learning: Learn the Hard Stuff from the Easy Stuff French vs. Italian: Subject Parameter

Yang (2004): Learning Complex Systems

Language is a complex system

Only humans seem able to learn human languages

Something in our biology must allow us to do this. Chomsky: Universal Grammar = do this. Ciases for learning language.
innate biaskinn

But obviously language is learned, not just prespecified beforehand
Constrained variation across languages: phonology, lexicon, structure.

English

 0000The point: need innate biases \& probabilistic learning abilities
Need to explicitly integrate them with each other.

Yang (2004): Learning Complex Systems

The linguist-psychologist breakdown

Linguists
Characterize "scope and limits of innate principles of Universal Grammar that govern the
world's languages".

David Lightfoot

Psychologists
Emphasize the "role of experience and the child's domain-general learning ability"

Michael Tomasello

Brian MacWhinney

Yang (2004): Learning Complex Systems

Statistics for word segmentation (remember Gambell \& Yang (2006))
"Modeling shows that the statistical learning (Saffran et al. 1996) does not reliably segment words such as those in child-directed English.
Specifically, precision is 41.6%, recall is 23.3%. In other words, about 60\% of words postulated by the statistical learner are not English words, and almost 80% of actual English words are not extracted. This is so even under favorable learning conditions".

Unconstrained (simple) statistics: not so good.

If statistical measure is
constrained by language-specific
knowledge (words have only one
main stress), performance
increases dramatically: 73.5\%
precision, 71.2% recall.

Yang (2004): Learning Complex Systems
Combining statistics with Universal Grammar
A big deal:
"Although infants seem to keep track of statistical information, any conclusion drawn from such findings must presuppose that children know what kind of statistical information to keep track of

Ex: Transitional Probability
.of rhyming syllables?
..of syllables with nasal consonants? .of syllables of the form CV (ba, ti)?

Yang (2004): Learning Complex Systems

Universal Grammar: Principles \& Parameters

Yang (2004): Learning Complex Systems

Universal Grammar: Principles \& Parameters
Parameters: Constrained variation across languages. Child must learn which option native language uses.
Japanese/Navajo Basic word order:
Subject Object Verb
Postpositions:
Noun Phrase Postposition

Possessor before Possessed Possessor Possession

Edo/English
Basic word order:
Subject Verb Object
Prepositions:
Preposition Noun Phrase
Possessed before Possessor
Possession Possessor

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Triggering
Grammar = combination of parameter values
 00000

Trigger Learning:
00000
00000
At any given time, the child has in mind a single grammar.
If this current grammar can successfully analyze the current data, it stays. Otherwise, the child will shift to a completely new grammar by altering one or more parameter values. This new grammar will (hopefully) be able to analyze the current data.

Learning trajectory expectation: Sudden shifts in performance, not gradual. This is problematic.

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data.

Yang (2004): Learning Complex Systems
Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data.

The Learning Algorithm

For each data point d encountered in the input
Choose a grammar probabilistically from available grammars

If this grammar can analyze the data point, increase its probability slightly (reward)
Else
decrease its probability slightly (punish)

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data

The Basic Idea
If there is a single target grammar (the usual case), the non-target grammars will be chosen to analyze data at some point and be unsuccessful.

Each time this happens, they will lose some probability.

$0.21 \bigcirc \bigcirc \bigcirc \bigcirc$
0000

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data.

The Basic Idea

If there is a single target grammar (the usual case), the non-target grammars will be chosen to analyze data at some point and be unsuccessful.

Each time this happens, they will lose some probability.

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data.

The Basic Idea

If there is a single target grammar (the usual case), the non-target grammars will be chosen to analyze data at some point and be unsuccessful.

Each time this happens, they will lose some probability.

The target grammar, in contrast, is always able to analyze the data and so will always ncrease in probability. It will eventually win out over the non-target grammars.
(Probability =~ 1.0)

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data.

The Main Force
The crucial data is that which is
The crucial data is that which is
unambiguous for the target grammar:
this data is incompatible with non-targe
grammars.
The more unambiguous data there is,
the faster the target grammar will win.
Added perk: Learning is then gradual (probabilistic).

Problem: Does unambiguous data exist for entire grammars? This requires data that is incompatible with every other possible parameter of every other possible grammar.

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data

The Learning Algorithm

For each data point d encountered in the input
Choose a grammar probabilistically from available grammars by probabilistically accessing the parameter values.

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze
the available data

Parameterized Grammars
This algorithm can take advantage of the fact that grammars are really sets of parameter values.
Parameter values can be probabilistically accessed.

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data

The Learning Algorithm
For each data point d encountered in the input
Choose a grammar probabilistically from available grammars by probabilistically accessing the parameter values.

If this grammar can analyze the data point, increase the probability of all participating parameters values slightly (reward)

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data.

The Learning Algorithm

For each data point d encountered in the input
Choose a grammar probabilistically from available grammars by probabilistically accessing the parameter values.

If this grammar can analyze the data point, increase the probability of all participating parameters values slightly (reward)

Else
decrease the probability of all participating parameters values slightly (punish)

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data.

The Main Force

The crucial data is that which is
unambiguous for the target parameter values:
this data is incompatible with non-targe
parameter values.

The more unambiguous data there is, the faster the target grammar will win

Added perk remains: Learning is still gradual (probabilistic).
Problem ameliorated: unambiguous data much more likely to exist for individual parameter values instead of entire grammars.

Yang (2004): Learning Complex Systems

Variational Learning: Sample Case
Null subjects:
Parameter 1: Pro-drop, rely on unambiguous subject-verb agreement Ex: Spanish, Italian (+pro-drop)

Ex: English (-pro-drop)
$\sqrt{ }$ Yo puedo cantar
can-1st-sg sing-inf
'I can sing'
$\sqrt{ }$ Pue
Puedo cantar. $\quad \mathrm{X}$ * Can sing
'I can sing'
Hay lluvia
Is-3rd-sg rain
"There is rain"
$\sqrt{ }$ There is rain

Yang (2004): Learning Complex Systems

Variational Learning: Sample Case
Null subjects:
Parameter 1: Topic-drop, drop subject/object if discourse topic
Ex: Chinese (+topic-drop)
Ex: English (-topic-drop)
(Topic = Jareth)
Mingtian guiji hui xiayu. X *It is tomorrow that believes
Tomorrow estimate will rain
'It is tomorrow that Jareth believes
it will rain'

Yang (2004): Learning Complex Systems

Variational Learning: Sample Case
Null subjects: 2 binary parameters, 4 grammars

$$
\begin{aligned}
& \text { +pro-drop, +topic-drop } \\
& \text { Warlpiri, American Sign Language }
\end{aligned}
$$

 Italian, Spanish
-pro-drop, +topic-drop
English

Yang (2004): Learning Complex Systems
Variational Learning: Sample Case
Null subjects: 2 binary parameters, 4 grammars

What happens for an English-learning child?
Pro-drop languages depend on rich subject-verb agreement morphology . English doesn't have that, which is something a child will easily notice. Knock out + pro-drop grammars.

Yang (2004): Learning Complex Systems

Variational Learning: Sample Case
Null subjects: 2 binary parameters, 4 grammars

What happens for an English-learning child? But this still leaves the +topic-drop option. What data will rule that out?

Answer: Expletive subjects. (Can't topic-drop them.)
There's a goblin in the castle."
"It's raining outside."
But this only occurs in 1.2% of the
data. (fairly rare)

Yang (2004): Learning Complex Systems

Variational Learning: Sample Case
Null subjects: Prediction if kids take awhile to notice English is -topic-drop
English kids use +topic-drop (Chinese-style) grammar until they encounter enough expletives to notice that English does not optionally drop topics.
Property of Chinese-style grammar: Can drop both subjects and objects
Prediction: When English children use +topic-drop grammar, they will drop subjects and objects at the same relative rate that +topic-drop (Chinese) children do

Yang (2004): Learning Complex Systems

Variational Learning: General Predictions
The time course of when a parameter is set depends on how frequent the
necessary evidence is in child-directed speech.
Parameters set early: more unambiguous data
Parameters set late: less unambiguous data
Parameters set at the same time: equal quantity of unambiguous data

Thompson \& Newport (2007):
Statistically Learning Structure Rules
A look at real language properties
Optional phrases
Possible categories in a language:
Determiners ("the", "a"), Nouns ("goblin", "child"), Adverbs ("easily"), Verbs ("steals")
The goblin easily steals the child.

ABCDEF $\longleftarrow \begin{aligned} & \text { If the child only ever sees this, no way to know } \\ & \text { how the phrases break up. }\end{aligned}$

ABCDEF
ABCDEF

ABCDEF

Thompson \& Newport (2007):
Statistically Learning Structure Rules
A look at real language properties in action with transitional probabilities
Example: Optional phrases
Possible categories in a language:
Determiners ("the", "a"), Nouns ("goblin", "child"), Adverbs ("easily"), Verbs ("steals")
The goblin easily steals the child.

The goblin steals the child.

Thompson \& Newport (2007)
Statistically Learning Structure Rules
Artificial language
Baseline pattern: ABCDEF

Nonsense Words Assigned to Each Form Class						
(Words	B Words	C Words	D Words	E Words	F Words	
KOF (oaf)	HOX (box)	JES (dress)	SOT (coat)	FAL. (pal)	KER (her)	
PAZ (has)	NEB (web)	REL (fell)	ZOR (core)	TAF (waif)	NAV (have)	
MER (her)	LEV (fev)	TID (bid)	LUM (bum)	RUD (bod)	SIB (bib)	

Thompson \& Newport (2007):
Statistically Learning Structure Rules
Assessment of learning
Sentence test: linear order correct? (extract ABCDEF pattern) [30 items]
Example: test between ABCDEF and random replacement ABCDCF
Sample items:
kof hox jes sot fal ker vs. kof hox jes sot rel ker

Phrase test: phrase boundaries correct? (extract AB CD EF phrases) [18 items]
Example: test between AB and non-phrase BC
Sample items: kof hox vs. hox jes

Thompson \& Newport (2007):
Statistically Learning Structure Rules

Assessment of learning

Phrase Learning

Thompson \& Newport (2007)
Statistically Learning Structure Rules
Artificial language
Baseline pattern: ABCDEF
Optional language (remove one phrase at a time)
Phrases to be extracted: AB, CD, EF
Grammatical strings: ABCDEF, CDEF, ABEF, ABCD
Example strings heard:

kof hox jes sot fal ker rel zor taf nav mer neb rud sib daz lev tid lum		Stimuli: 96 of possible 972 Half canonical: ABCDEF Half distributed among other patterns			
	$A \rightarrow B$	$B \rightarrow C$	$C \rightarrow D$	$D \rightarrow E$	$E \rightarrow F$
	1.00	0.80	1.00	0.80	1.00
Optional phrases	0.90	0.90	0.90	0.90	0.90
Ontional control					

Optional control language (remove one adjacent pair at a time) Control strings: ABCDEF, BCDE, CDEF, ABEF, ABCF, ABCD

Thompson \& Newport (2007):
Statistically Learning Structure Rules
Assessment of learning
Sentence Learning

Thompson \& Newport (2007)
Statistically Learning Structure Rules

Artificial language

Baseline pattern: ABCDEF
Repeated phrases language (optionally repeat one phrase at the end, no word repeats) Phrases to be extracted: AB, CD, EF
Grammatical strings: $A B C D E F, A B C D E F A B, A B C D E F C D, A B C D E F E F$
Example strings heard:
kof hox jes sot fal ker
kof hox rel zor taf nav daz neb
Stimuli: 68
Half canonical: ABCDEF
Half canonical: ABCDEF
Half distributed among other patterns mer neb jes zor rud sib tid sot daz lev tid lum fal nav taf ker

	$A \rightarrow B$	$B \rightarrow C$	$C \rightarrow D$	$D \rightarrow E$	$E \rightarrow F$
Repeated phrases	1.00	0.86	1.00	0.86	1.00
Repcated control	0.92	0.94	0.92	0.94	0.93

Repeated control language (repeat one adjacent pair at a time) Control strings: ABCDEF, ABCDEFAB, ABCDEFBC, ABCDEFCD. ABCDEFDE, ABCDEFFA

Thompson \& Newport (2007)
Statistically Learning Structure Rules
Artificial language
Baseline pattern: ABCDEF
Moved phrases language (1 of 6 legal permutations)
Phrases to be extracted: AB, CD, EF
Grammatical strings: ABCDEF, ABEFCD, CDABEF, CDEFAB, EFABCD, EFCDAB

Example strings heard:
 kof hox jes sot fal ker

Stimuli: 80
daz neb rel taf nav zor

	$A \rightarrow B$	$B \rightarrow C$	$C \rightarrow D$	$D \rightarrow E$	$E \rightarrow F$
Moved phrases	1.00	0.60	1.00	0.60	1.00
Moved control	0.78	0.78	0.78	0.78	0.78

Moved control language (move one adjacent pair at a time) Control strings: ABCDEF, ABEFCD, CDABEF, CDEFAB, EFABCD, EFCDAB, BCAFDE, AFDEBC, DEAFBC, DEBCAF

Thompson \& Newport (2007):
Statistically Learning Structure Rules
Artificial language
Baseline pattern: ABCDEF
Class size variation language (2 or 4 words per class)
Phrases to be extracted: AB, CD, EF
Grammatical strings: ABCDEF
Example strings heard:
kof neb jes zor fal nav mer lev tid lum rud nav

daz neb rel zor taf sib	hox lev sot lum ker sib			word-level matters	
	$A \rightarrow B$	$B \rightarrow C$	$C \rightarrow D$	$D \rightarrow E$	$E \rightarrow F$
Class size vuriation	1.00	1.00	1.00	1.00	1.00
Clins					

Class size control

	DAZ \rightarrow NEB	NEB \rightarrow REL	REL \rightarrow ZOR	ZOR \rightarrow TAF	TAF \rightarrow NAV
Class size variation	.50	.25	.50	.25	.50
Class size control	.33	.33	.33	.33	.33

Thompson \& Newport (2007):
Statistically Learning Structure Rules

Thompson \& Newport (2007)
Statistically Learning Structure Rules

Thompson \& Newport (2007):
Statistically Learning Structure Rules

Thompson \& Newport (2007):
Statistically Learning Structure Rules
Assessment of learning
Phrase, Day 1

Thompson \& Newport (2007):
Statistically Learning Structure Rules
Assessment of learning T\&N say: Experimental groups better than control for basic word order, except for class size
Phrase, Day 5

Condition

Thompson \& Newport (2007):
Statistically Learning Structure Rules
Assessment of learning Control group performance: Due to memorization of canonical form (half the training)?

Thompson \& Newport (2007)
Statistically Learning Structure Rules

Thompson \& Newport (2007)
Statistically Learning Structure Rules

Artificial language

Baseline pattern: ABCDEF
All-combined language (optional, repeated, moved, class size variation)
Phrases to be extracted: AB, CD, EF
Grammatical strings: ABCDEF, CDEF, ABCDEFAB, ABCDEFCD, CDABEF,
Grammatical strings. ABCDEF,

	$A \rightarrow B$	$B \rightarrow C$	$C \rightarrow D$	$D \rightarrow E$	$E \rightarrow F$
All-combined	1.00	0.56	1.00	0.52	1.00
All-combined control	0.80	0.83	0.74	0.77	0.74
More information....but many more members of language $=$ harder to learn					
Language		Senten			Sentences
Optional phrases					972
Repeated phrases					20,412
Moved phrases					4,374
Class size variation					512
All-combined					233,536

Thompson \& Newport (2007):
Statistically Learning Structure Rules

Thompson \& Newport (2007):
Statistically Learning Structure Rules

Thompson \& Newport (2007):
Statistically Learning Structure Rules

Discussion: Do we believe that this is strong evidence for the discovery of grammatical structure (and rules) via transitional probability?

