Psych229: Language Acquisition

Lecture 15
Productivity & Rules - Modeling

Marcus (2003): Symbols

Elman (1990, 1993) sentence prediction model

26 input, 26 output nodes

Context layer records copy of activation pattern of hidden layer = gives 1 time step worth of memory

Learning via back propagation

Task: predict next word in sentence Training: sentences from toy grammar with 23 words and a variety of grammatical dependencies (subject-verb agreement)

Marcus (2003): Symbols

Elman (1990, 1993) sentence prediction model

Learned complicated strings like

cats chase dogs

boys who chase dogs see girls

 \dots without grammatical rules explicitly built in (singular subject has verb with singular ending, match main clause subject with main clause verb).

Taken as strong evidence against the need for grammatical rules in language.

Anderson & Hinton (1981)

"...the symbol-processing metaphor may be an inappropriate way of thinking about computational processes that underlie abilities like learning, perception, and motor skills...alternative models that appear to be more appropriate for machines like the brain."

Marcus (2003): Symbols

Rumelhart & McClelland (1986): past tense acquisition model

Two-layer perceptron (no hidden layer) "provides a distinct alternative...to [rules] in any explicit sense"

But what are the real arguments against symbol manipulation?

One argument: multilayer perceptrons are more compatible with what we know about the way the brain is laid out

Counter-argument: perceptron "neurons" and "synapses" are only loosely based on real brain neurons and synapses - they have properties real ones don't; also, how is back propagation instantiated?

Marcus (2003): Symbols

More arguments against symbol-manipulation models

Argument: Connectionist models have been show to degrade gracefully (when part of the network is knocked out, it can still function)

Counter-argument: Symbol-manipulating models can do this, too (error-correction algorithms, partial feature-matching algorithms)

Another argument: they have been show mathematically to be able to represent a large class of functions (universal function approximator, generalization ability)

Counter-argument: mathematical proofs don't have real world considerations (like non-infinite data or realistic distributions of data), also, class of representable functions may not be all the ones needed for language (partial recursive functions would be necessary (Hadley (2000))

