Psych 156A/ Ling 150: Acquisition of Language II

Lecture 10
Syntactic categorization I

Announcements

HW3 available (due 5/26/16)

- Remember that working in groups can be very helpful!

Review questions for syntactic categorization available

Computational problem

Identify classes of words that behave similarly (are used in similar syntactic environments). These are called grammatical or syntactic categories.

"This is a DAX."

DAX = noun

"He is SIBing."

SIB = verb

"He is very BAV."

BAV = adjective

"He should sit GAR the other dax."

GAR = preposition

Category flexibility

http://xkcd.com/1443/

Syntactic categorization

Examples of different categories in English:

noun = goblin, kitten, king, girl

Examples of how nouns are used:

I like that goblin. Kittens are adorable.

A king said that no girls would ever solve the Labyrinth.

Syntactic categorization

Examples of different categories in English:

verb = like, are, said, solve, stand

Examples of how verbs are used:

I like that goblin. Kittens are adorable.

A king said that no girls would ever solve the Labyrinth.

Sarah was standing very close to him.

Syntactic categorization

Examples of different categories in English:

adjective = silly, adorable, brave, close

Examples of how adjectives are used:

I like the silliest goblin. Kittens are so adorable.

The king said that only brave girls would solve the Labyrinth.

Sarah was standing very close to him.

Syntactic categorization

Examples of different categories in English:

preposition = near, through, to

Examples of how prepositions are used:

I like the goblin near the king's throne.

The king said that no girls would get through the Labyrinth.

Sarah was standing very close to him.

Syntactic categorization

If you know the syntactic category of the word, then you will know how this word is used in the language. This will allow you to recognize other words that belong to the same category since they will be used the same way.

"This is a DAX."

DAX = noun

"He is SIBing."

SIB = verb

"He is very BAV."

BAV = adjective

"He should sit GAR the other dax."

GAR = preposition

Categorization: How?

How might children initially learn what categories words are?

Semantic bootstrapping hypothesis (Pinker 1984)

"...the child comes equipped with innate expectations of certain grammatical categories as well as built-in mappings between key concept types and grammatical categories. For example, children might jumpstart syntactic learning with the innate knowledge that nouns tend to refer to objects, or that the subject of a sentence is typically the agent of the action that's being described." — Sedivy 2014, p.201

Categorization: How?

How might children initially learn what categories words are?

Semantic bootstrapping hypothesis (Pinker 1984)

One practical application: Children can initially determine a word's category by observing what kind of entity in the world it refers to.

Categorization: How?

How might children initially learn what categories words are?

Semantic bootstrapping hypothesis (Pinker 1984)

One practical application: Children can initially determine a word's category by observing what kind of entity in the world it refers to.

objects, substance = noun (goblins, glitter)

action = verb (steal, sing)

property = adjective
(shiny, stinky)

The word's meaning is then linked to innate syntactic category knowledge (nouns are objects/substances, verb are actions, adjectives are properties)

Categorization: How?

How might children initially learn what categories words are?

Semantic bootstrapping hypothesis (Pinker 1984)

One problem: Mapping rules are not perfect

Ex: not all action-like words are verbs

"bouncy", "a kick" action-like meaning, but they're not verbs

Ex: not all property-like words are adjectives

"they are shining brightly", "they glitter"
seem to be referring to properties, but these aren't adjectives

Categorization: How?

Idea 2: Distributional Learning

Children can initially determine a word's category by observing the linguistic environments in which words appear.

Noun

Kittens are adorable.

Verb

Sarah was standing very close to him.

Adjective

I like the silliest goblin.

The king said that no girls would get through the Labyrinth.

Preposition

Are children sensitive to distributional information?

Children are sensitive to the distributional properties of their native language when they're born (Shi, Werker, & Morgan 1999).

15-16 month German infants can determine novel words are nouns, based on the distributional information around the novel words (Höhle et al. 2004)

18-month English infants can track distributional information like "is...-ing" to signal that a word is a verb (Santelmann & Jusczyk 1998)

Mintz 2003: Is distributional information enough?

How do we know in child-directed speech (which is the linguistic data children encounter)...

- (1) ...what distributional information children should pay attention to?
- (2) ...if the available distributional information will actually correctly categorize words?

Mintz 2003: What data should children pay attention to?

"...question is how the learner is to know which environments are important and which should be ignored. Distributional analyses that consider all the possible relations among words in a corpus of sentences would be computationally unmanageable at best, and impossible at worst."

One idea: local contexts

"...by showing that local contexts are informative, these findings suggested a solution to the problem of there being too many possible environments to keep track of: focusing on local contexts might be sufficient."

Mintz 2003: Frequent frames

Idea: What categorization information is available if children track frequent frames?

Frequent frame: X Y

where X and Y are words that frame another word and appear frequently in the child's linguistic environment

Examples: the is can him

> can trick him... the king is... the goblin is... can help him... the girl is... can hug him...

Mintz 2003: Samples of child-directed speech

Data representing child's linguistic environment:

6 corpora of child-directed speech from the CHILDES database, which contains transcriptions of parents interacting with their children.

CHILDES Child Language Data Exchange System

http://childes.psy.cmu.edu

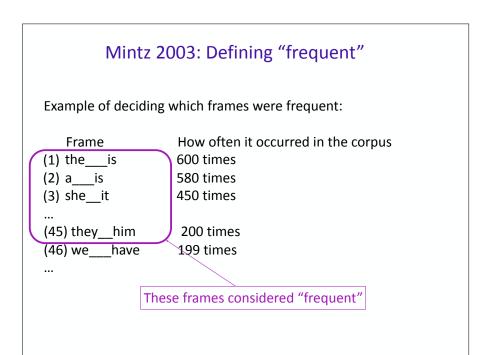
Corpus (sg.), corpora (pl). = a collection of data [from Latin body, a "body" of data]

Mintz 2003: Defining "frequent"

Definition of "frequent" for frequent frames: Frames appearing a certain number of times in a corpus

"The principles guiding inclusion in the set of frequent frames were that frames should occur frequently enough to be noticeable, and that they should also occur enough to include a variety of intervening words to be categorized together.... a pilot analysis with a randomly chosen corpus, Peter, determined that the 45 most frequent frames satisfied these goals and provided good categorization."

Set of frequent frames = 45 most frequent frames



Mintz 2003: Testing the categorization ability of frequent frames

Try out frequent frames on a corpus of child-directed speech.

Frame (1): the is

Transcript: "...the radio is in the way...but the doll is...and the teddy is..."

radio, doll, teddy are placed into the same category by the is

Frame (13): you it

Transcript: "...you draw it so that he can see it... you dropped it on purpose!...so he hit you with it..."

draw, dropped, with are placed into the same category by you it

Mintz 2003: Determining the success of frequent frames

Signal detection theory applied to categorization

		Actually are same category?		
		Yes	No	
1.1.1.1	Same category	Hit	False Alarm	
Labeled	Not same category	Miss	Correct Rejection	

Example:

"doll" and "teddy" together

"doll" = Noun

"teddy" = Noun

Labeled as same, and both actually are the same (Nouns). Hit

Mintz 2003: Determining the success of frequent frames

Signal detection theory applied to categorization

		Actually are same category?		
		Yes	No	
Labalad	Same category	Hit	False Alarm	
Labeled	Not same category	Miss	Correct Rejection	

Example:

"draw" and "with" together

"draw" = Verb

"with" = Preposition

Labeled as same, and but both actually aren't the same.

False Alarm

Mintz 2003: Determining the success of frequent frames

Signal detection theory applied to categorization

		Actually are same category?		
		Yes	No	
Labeled	Same category	Hit	False Alarm	
Labeled	Not same category	Miss	Correct Rejection	

Example:

"draw" and "breathe" not together

"draw" = Verb

"breathe" = Verb

Labeled as not the same, and but both actually are the same.

Miss

Mintz 2003: Determining the success of frequent frames

Signal detection theory applied to categorization

		Actually are same category?		
		Yes	No	
Labeled	Same category	Hit	False Alarm	
Labeled	Not same category	Miss	Correct Rejection	

Example:

"draw" and "teddy" **not** together

"draw" = Verb

"teddy" = Noun

Labeled as not the same, and and both actually aren't the same.

Correct Rejection

Mintz 2003: Determining the success of frequent frames

Signal detection theory applied to categorization

Intuition: "Of the pairs of words the frame put together (Labeled same category), how many actually did belong together (Hits)?"

Mintz 2003: Determining the success of frequent frames

Signal detection theory applied to categorization

		Actually are same category?		
		Yes	No	
Labeled	Same category	Hit	False Alarm	
Labeled	Not same category	Miss	Correct Rejection	

Precision = Hits Example:
Hits + False Alarms Frame pu

Frame puts "draw", "dropped", "jumped", "hitting" and "with" together.

"hitting", and "with" together.

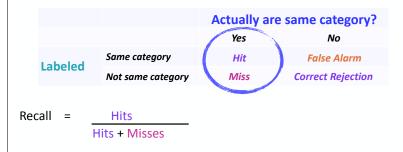
Pairs of words put together:

draw+dropped, draw+jumped, draw+hitting, draw+with, dropped+jumped, dropped +hitting, dropped+with, jumped+hitting, jumped+with, hitting+with Precision:

$$\frac{6}{6+4} = 6/10 = 0.60$$

Mintz 2003: Determining the success of frequent frames

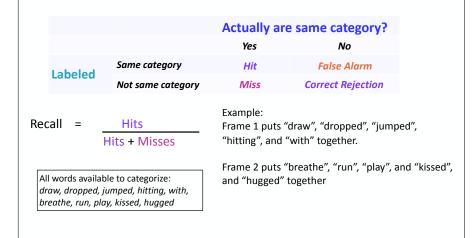
Signal detection theory applied to categorization



Intuition: "Of the pairs of words the frame should have put together (Actually are same category), how many did it put together (Hits)?"

Mintz 2003: Determining the success of frequent frames

Signal detection theory applied to categorization



Mintz 2003: Determining the success of frequent frames

Signal detection theory applied to categorization

		Actually are	Actually are same category?		
		Yes	No		
Labalad	Same category	Hit	False Alarm		
Labeled	Not same category	Miss	Correct Rejection		
Recall =	Hits + Misses	Traine I pais aran, aroppea, jumpea,			
Frame 2 puts "breathe", "run", "play", and "kissed", and "hugged" together.					
lraw+dropped, draw Iropped+hitting, drop itting+play, hitting+I	pped+breathe, dropped+run, drop	eathe, draw+run, draw+p pped+play, dropped+kisse run, breathe+play, breath	ames 1 and 2 collectively lay, draw+kissed, draw+hugged, d d, dropped+hugged, hitting+breat e+kissed, breathe+hugged, run+pl	he, hitting+	

Mintz 2003: Determining the success of frequent frames

Signal detection theory applied to categorization

		Actually are	Actually are same category?	
		Yes	No	
Labeled	Same category	Hit	False Alarm	
Labeleu	Not same category	Miss	Correct Rejection	
ecall =	Example: Frame 1 puts "draw", "dropped", "jumped", Whitts + Misses Example: Frame 1 puts "draw", "dropped", "jumped", Whitting", and "with" together.			
Frame 2 puts "breathe", "run", "play", and "kissed", and "hugged" together.				
Pairs of words that should have been put together = 15 Hits + 15 Misses for Frames 1 and 2 collectively Recall:				
$\frac{15}{15+15} = 15/30 = 0.50$				

Mintz 2003: Determining the success of frequent frames

Signal detection theory applied to categorization

		Actually are same category?	
		Yes	No
Labeled	Same category	Hit	False Alarm
Labeled	Not same category	Miss	Correct Rejection
Recall =	Hits + Misses	Example: Frame 1 puts "draw", "dropped", "jumped", "hitting", and "with" together.	
		Frame 2 puts "l and "hugged" t	breathe", "run", "play", a cogether.
ery precise (n	en though the individual nostly verbs), the recall see not all together in the	score is lowered	Recall: 15 15 15 15 15 15 15 15 15 15 15 15 15 15 1

Mintz 2003: Some actual frequent frame results

Frame: you___it

Category includes:

put, want, do, see, take, turn, taking, said, sure, lost, like, leave, got, find, throw, threw, think, sing, reach, picked, get, dropped, seen, lose, know, knocked, hold, help, had, gave, found, fit, enjoy, eat, chose, catch, with, wind, wear, use, took, told, throwing, stick, share, sang, roll, ride, recognize, reading, ran, pulled, pull, press, pouring, pick, on, need, move, manage, make, load, liked, lift, licking, let, left, hit, hear, give, flapped, fix, finished, drop, driving, done, did, cut, crashed, change, calling, bring, break, because, banged

Mintz 2003: Some actual frequent frame results

Frame: the___is

Category includes:

moon, sun, truck, smoke, kitty, fish, dog, baby, tray, radio, powder, paper, man, lock, lipstick, lamb, kangaroo, juice, ice, flower, elbow, egg, door, donkey, doggie, crumb, cord, clip, chicken, bug, brush, book, blanket, mommy

Mintz 2003: How successful frequent frames were

Precision: Above 90% for all corpora (high) = very good!

Interpretation: When a frequent frame clustered words together into category, they often did belong together. (Nouns were put together, verbs were put together, etc.)

Recall: Around 10% for all corpora (very low) = maybe not as good...

Interpretation: A frequent frame made lots of little clusters, rather than being able to cluster all the words into one category. (So, there were lots of Noun-ish clusters, lots of Verb-ish clusters, etc.)

Mintz 2003: How successful frequent frames were

Precision: Above 90% for all corpora (high) = very good!

Only a few errors within a cluster

Recall: Around 10% for all corpora (very low) = maybe not as good...

Lots of little clusters instead of one big cluster per category

Mintz 2003: Getting better recall

How could we form just one category of Verb, Noun, etc.?

Observation: Many frames overlap in the words they identify.

What about putting clusters together that have a certain number of words in common?

Mintz 2003: Getting better recall

How could we form just one category of Verb, Noun, etc.?

Observation: Many frames overlap in the words they identify.

Mintz 2003: Getting better recall

How could we form just one category of Verb, Noun, etc.?

Observation: Many frames overlap in the words they identify.

Mintz 2003: Getting better recall

How could we form just one category of Verb, Noun, etc.?

Observation: Many frames overlap in the words they identify.

the__is/was dog cat king girl teddy

Mintz 2003: Getting better recall

How could we form just one category of Verb, Noun, etc.?

Observation: Many frames overlap in the words they identify.

Mintz 2003: Getting better recall

How could we form just one category of Verb, Noun, etc.?

Observation: Many frames overlap in the words they identify.

Mintz 2003: Getting better recall

How could we form just one category of Verb, Noun, etc.?

Observation: Many frames overlap in the words they identify.

```
the/a/that_is/was
dog teddy
cat goblin
king
girl
```

Recall goes up to 91% (very high) = very good! Precision stays above 90% (very high) = very good!

Experimental support for frequent frames

"Another important difference...adults will categorize words in an artificial language based on their occurrence within frames...whereas bigram regularity alone has failed to produce categorization in artificial grammar experiments, without additional cues..." - Mintz 2003

Also, Mintz (2006) shows that 12-month-olds are sensitive to frequent frames in an experimental setup.

Computational support for frequent frames

Chemla et al. 2009, Wang & Mintz 2010, Wang et al. 2010: It's very important that the categorizing unit be a frame rather than simply a bigram of the two words preceding the word to be categorized. A simulated learner using bigrams fails to categorize well on child-directed speech.

Frame

XZY

Computational support for frequent frames

St Clair et al. 2010: However, it may be helpful for the child to recognize the individual bigram units that make up a frame. A simulated learner who's aware of the composite bigrams categorizes better than a learner who isn't.

Frame

XZY

Composite Bigram

XZY = XZ + ZY

Computational support for frequent frames

Chemla et al. 2009: It's important that the units making up the frames be words rather than more abstract units (like derived categories which cluster some words together). A learner using frames made up of categories doesn't categorize well on child-directed speech.

Word-based frame

the Z is

Category-based frame

the/a Z is/are

Cross-linguistic application?

"The fundamental notion is that a relatively local context *defined by* frequently co-occurring units can reveal a target word's category...[here] the units were words and the frame contexts were defined by words that frequently co-occur. In other languages, a failure to find frequent word frames could trigger an analysis of co-occurrence patterns at a different level of granularity, for example, at the level of sub-lexical morphemes. The frequently co-occurring units in these languages are likely to be the inflectional morphemes which are limited in number and extremely frequent." – Mintz 2003

Western Greenlandic

Aliikusersuillammassuaanerartassagaluarpaalli. aliiku-sersu-i-llammas-sua-a-nerar-ta-ssa-galuar-paal-li entertainment-provide-SEMITRANS-one.good.at-cop-say.that-REP-FUT-sure.but-3.PL.SUBJ/3SG.OBJ-but 'However, they will say that he is a great entertainer, but ...'

Mintz 2003: Recap

Frequent frames are non-adjacent co-occurring words with one word in between them. (ex: the___is)

They are likely to be information young children are able to track, based on experimental studies.

When tested on realistic child-directed speech, frequent frames do very well at grouping words into clusters which are very similar to actual syntactic categories like Noun and Verb.

Frequent frames could be a very good strategy for children to use when they try to learn the syntactic categories of words.

Cross-linguistic application?

Some work done for French (Chemla et al. 2009), Spanish (Weisleder & Waxman 2010), Chinese (Cai 2006, Xiao, Cai, & Lee 2006), German (Wang et al. 2010, Stumper et al. 2011), Turkish (Wang et al. 2010)

Very similar results: high precision, low recall (before aggregation)
-However, for Turkish and German, it's better to have FFs at the morpheme (rather than whole word) level

However, other work in Dutch (Erkelens 2008, Liebbrandt & Powers 2010) suggests that FFs don't fare as well, especially when they surround function words (like "the" and "a").

Wang & Mintz 2008: Simulating children using frequent frames

"...the frequent frame analysis procedure proposed by Mintz (2003) was not intended as a model of acquisition, but rather as a demonstration of the information contained in frequent frames in child-directed speech...Mintz (2003) did not address the question of whether an actual learner could detect and use frequent frames to categorize words..."

Wang & Mintz 2008: Simulating children using frequent frames

"This paper addresses this question with the investigation of a computational model of frequent frame detection that incorporates more psychologically plausible assumptions about the memor[y] resources of learners."

Computational model: a program that simulates the mental processes occurring in a child. This requires knowing what the input and output are, and then testing the algorithms that can take the given input and transform it into the desired output.

Considering children's limitations

Memory Considerations

- (1) Children possess limited memory and cognitive capacity and cannot track all the occurrences of all the frames in a corpus.
- (2) Memory retention is not perfect: infrequent frames may be forgotten.

The Model's Operation

- (1) Only 150 frame types (and their frequencies) are held in memory
- (2) Forgetting function: frames that have not been encountered recently are less likely to stay in memory than frames that have been recently encountered

Wang & Mintz (2008): How the model works

Child encounters an utterance (e.g. "You read the story to mommy.") Child segments the utterance into frames:

You	read	the	story	to	mommy.
(1) you	Χ	the			
(2)	read	Χ	story		
(3)		the	Χ	to	
(4)			story	Χ	mommy

Frames:

you the, read story, the to, story mommy

Wang & Mintz (2008): How the model works

In the beginning, there is nothing in the learner's memory.

Memory Activation

Processing Step 1

If memory is not full, a newly-encountered frame is added to the memory and its initial activation is set to 1.

Memory Activation you___the 1.0

Processing Step 1

Wang & Mintz (2008): How the model works

The forgetting function is simulated by the activation for each frame in memory decreasing by 0.0075 after each processing step.

Memory Activation you__the 0.9925

Forgetting function

Wang & Mintz (2008): How the model works

When a new frame is encountered, the updating depends on whether the memory is already full or not. If it is not and the frame has not already been encountered, the new frame is added to the memory with activation 1.

MemoryActivationread___story1.0you__the0.9925

Processing Step 2 (read___story)

Wang & Mintz (2008): How the model works

When a new frame is encountered, the updating depends on whether the memory is already full or not. If it is not and the frame has not already been encountered, the new frame is added to the memory with activation 1.

MemoryActivationread___story0.9925you__the0.9850

Forgetting function

When a new frame is encountered, the updating depends on whether the memory is already full or not. If it is not and the frame has not already been encountered, the new frame is added to the memory with activation 1.

Memory	Activation
theto	1.0
readstory	0.9925
youthe	0.9850

Processing step 3 (the___to)

Wang & Mintz (2008): How the model works

When a new frame is encountered, the updating depends on whether the memory is already full or not. If it is not and the frame has not already been encountered, the new frame is added to the memory with activation 1.

Memory	Activation
theto	0.9925
readstory	0.9850
youthe	0.9775

Forgetting function

Wang & Mintz (2008): How the model works

When a new frame is encountered, the updating depends on whether the memory is already full or not. If it is not and the frame has not already been encountered, the new frame is added to the memory with activation 1.

Memory	Activation
storymommy	1.0
theto	0.9925
readstory	0.9850
you the	0.9775

Processing step 4 (story___mommy)

Wang & Mintz (2008): How the model works

When a new frame is encountered, the updating depends on whether the memory is already full or not. If it is not and the frame has not already been encountered, the new frame is added to the memory with activation 1.

Memory	Activation
storymommy	0.9925
theto	0.9850
readstory	0.9775
youthe	0.9700

Forgetting function

If the frame is already in memory because it was already encountered, activation for that frame increases by 1.

Memory	Activation
storymommy	0.9925
theto	0.9850
readstory	0.9775
youthe	0.9700

Processing step 5: (you____the)

Wang & Mintz (2008): How the model works

If the frame is already in memory because it was already encountered, activation for that frame increases by 1.

Memory	Activation
storymommy	0.9925
theto	0.9850
readstory	0.9775
youthe	1.9700

Processing step 5: (you____the)

Wang & Mintz (2008): How the model works

If the frame is already in memory because it was already encountered, activation for that frame increases by 1.

Memory	Activation
youthe	1.9700
storymommy	0.9925
theto	0.9850
read story	0.9775

Processing step 5: (you____the)

Wang & Mintz (2008): How the model works

If the frame is already in memory because it was already encountered, activation for that frame increases by 1.

Memory	Activation
youthe	1.9625
storymommy	0.9850
theto	0.9775
read story	0.9700

Forgetting function

Eventually, since the memory only holds 150 frames, the memory will become full.

Memory storymommy theto readstory youthe	Activation 4.6925 3.9850 3.9700 2.6925
shehim	0.9850
weit	0.7500

Memory after processing step 200

Wang & Mintz (2008): How the model works

At this point, if a frame not already in memory is encountered, it replaces the frame with the least activation, as long as that activation is less than 1.0.

Memory	Activation
storymommy	4.6925
theto	3.9850
readstory	3.9700
youthe	2.6925
shehim	0.9850
weit	0.7500

Processing step 201: because___said

Wang & Mintz (2008): How the model works

At this point, if a frame not already in memory is encountered, it replaces the frame with the least activation, as long as that activation is less than 1.0.

Memory	Activation
storymommy	4.6925
theto	3.9850
readstory	3.9700
youthe	2.6925
shehim	0.9850
we it	0.7500

Processing step 201: because ___said

Wang & Mintz (2008): How the model works

At this point, if a frame not already in memory is encountered, it replaces the frame with the least activation, as long as that activation is less than 1.0.

Memory	Activation
storymommy	4.6925
theto	3.9850
readstory	3.9700
youthe	2.6925
becausesaid	1.0000
shehim	0.9850

Processing step 201: because___said

Eventually, however, all the frames in memory will have been encountered often enough that their activations are greater than 1.

Memory storymommy theto readstory youthe	Activation 9.6925 8.9850 8.9700 5.6925
weher shehim	 3.9700 2.9850

Memory after processing step 5000

Wang & Mintz (2008): How the model works

At this point, no change is made to memory since the new frame's activation of 1 would be less than the least active frame in memory.

Memory	Activation
storymommy	9.6925
theto	8.9850
readstory	8.9700
youthe	5.6925
weher	3.9700
shehim	2.9850

Processing step 5001 (because___him)

Wang & Mintz (2008): How the model works

The forgetting function is then invoked.

Memory	Activation
storymommy	9.6850
theto	8.9775
readstory	8.9625
youthe	5.6850
weher	3.9625
she him	2.9775

Forgetting function

Wang & Mintz (2008): How the model did

Using same corpora for input as Mintz (2003)
(6 from CHILDES: Anne, Aran, Even, Naomi, Nina, Peter)

The model's precision was above 0.93 for all six corpora. This is very good!

When the model decided a word belonged with other words of a particular category (Verb, Noun, etc.) it usually did.

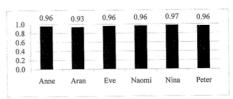


Figure 1 Accuracies after processing the six corpora

Wang & Mintz (2008): Conclusions

"...our model demonstrates very effective categorization of words. Even with limited and imperfect memory, the learning algorithm can identify highly informative contexts after processing a relatively small number of utterances, thus yield[ing] a high accuracy of word categorization. It also provides evidence that frames are a robust cue for categorizing words."

Wang & Mintz (2008): Recap

While Mintz (2003) showed that frequent frame information is useful for categorization, it did not demonstrate that children - who have constraints like limited memory and less cognitive processing power than adults - would be able to effectively use this information.

Wang & Mintz (2008) showed that a model using frequent frames in a psychologically plausible way (that is, a way that children might identify and use frequent frames) was able to have the same success at identifying the syntactic category that a word is.

Questions?

Use this time to work on HW3 and the syntactic categorization review questions. You should be able to do up through 4 on HW3 and up through 10 on the syntactic categorization review questions.