

Announcements
Pick up your HW1 if you haven't yet
Review questions available for word meaning
Be working on HW2 (due 5/15/12)
\quad - Note: Remember that working in a group can be very beneficial.
Midterm review in class on $5 / 3 / 12$
Midterm exam during class on $5 / 8 / 12$

What does "gavagai" mean?

Same problem the child faces

The Mapping Problem
Even if something is explicitly labeled in the input ("Look! There's
a goblin!"), how does the child know what specifically that word
refers to? (Is it the head? The feet? The staff? The
combination of eyes and hands? Attached goblin parts?...)
Quine (1960): An infinite number of hypotheses about word
meaning are possible given the input the child has. That is, the
input underspecifies the word's meaning.

One solution: fast mapping

Children begin by making an initial fast mapping between a new word they hear and its likely meaning. They guess, and then modify the guess as more input comes in.
Experimental evidence of fast mapping
(Carey \& Bartlett 1978, Dollaghan 1985, Mervis \& Bertrand 1994, Medina,Snedecker, Trueswell, \& Gleitman 2011)
ball

Computational Problem

"I love my daxes."

Dax $=$ that specific toy, teddy bear, stuffed animal, toy, object, ...?

A slight problem...

"...many studies find that children even as old as 18 months have difficulty in making the right inferences about the intended referents of novel words...infants as young as 13 or 14 months...can link a name to an object given repeated unambiguous pairings in a single session Overall, however, these effects are fragile with small experimental variations often leading to no learning." - Smith \& Yu (2008)

A slight problem...

"...not all opportunities for word learning are as uncluttered as the experimental settings in which fast-mapping has been demonstrated. In everyday contexts, there are typically many words, many potential referents, limited cues as to which words go with which referents, and rapid attentional shifts among the many entities in the scene." - Smith \& Yu (2008)

Cross-situational Learning

New approach: infants accrue statistical evidence across multiple trials that are individually ambiguous but can be disambiguated when the information from the trials is aggregated.

Fig. 1. Associations among words and referents across two individually ambiguous scenes. If a young learner calculates co-occurrences frequencies across these two trials, s/he can find the proper mapping of
"Ball" to BALL

How does learning work?

Bayesian inference is one way.

In Bayesian inference, the belief in a particular hypothesis (H) (or the probability of that hypothesis), given the data observed (D) can be calculated the following way:
$P(H \mid D)=\frac{P(D \mid H)^{*} P(H)}{P(D)}$

How does learning work?

Bayesian inference is one way.

In Bayesian inference, the belief in a particular hypothesis (H) (or the probability of that hypothesis), given the data observed (D) can be calculated the following way:
$P(H \mid D)=\frac{P(D \mid H){ }^{*} P(H)}{P(D)}$
Posterior probability of hypothesis H , given that data D have been observed

How does learning work?

Bayesian inference is one way.

In Bayesian inference, the belief in a particular hypothesis (H) (or the probability of that hypothesis), given the data observed (D) can be calculated the following way:

Likelihood of seeing data D , given that H is true

How does learning work?
Bayesian inference is one way.

In Bayesian inference, the belief in a particular hypothesis (H) (or the probability of that hypothesis), given the data observed (D) can be calculated the following way:
$\mathrm{P}(\mathrm{H} \mid \mathrm{D})=\frac{\mathrm{P}(\mathrm{D} \mid \mathrm{H}){ }^{*} \mathrm{P}(\mathrm{H})}{\text { Posterior probability }}$

How does learning work?

Bayesian inference is one way.

In Bayesian inference, the belief in a particular hypothesis (H) (or the probability of that hypothesis), given the data observed (D) can be calculated the following way:

How does learning work?

Bayesian inference is one way

In Bayesian inference, the belief in a particular hypothesis (H) (or the probability of that hypothesis), given the data observed (D) can be calculated the following way:
$P(H \mid D)=\frac{P(D \mid H) * P(H)}{\sum_{h} P(D \mid h)^{*} P(h)}$
Posterior probability
Likelihood Prior

How does learning work?

Bayesian inference is one way

In Bayesian inference, the belief in a particular hypothesis (H) (or the probability of that hypothesis), given the data observed (D) can be calculated the following way:

$P(H \mid D)=\frac{P(D \mid H)^{*} P(H)}{\sum_{h} P(D \mid h)^{*} P(h)}$	Probability of observing the data, no matter what hypothesis is true: Calculate by summing over all hypotheses
Posterior probability \quad Prior	

Cross-situational Learning

Let's apply Bayesian inference to this scenario.

Fig. 1. Associations among words and referents across two individually ambiguous scenes. If a young occurrences frequencies across these two trials, $s /$ he can find the proper mapping of "Ball" to BALL.

Cross-situational Learning

Let's apply Bayesian inference to this scenario.

This feels intuitively right, since "ball" could only refer to the ball, when these two scenes are reconciled with each other

Something to think about...

The real world isn't necessarily as simple as these experimental setups - often times, there will be many potential referents.

Something else to think about...
Having more referents may not be a bad thing.
Why not?
lt's easier for the correct associations to emerge from spurious
associations when there are more object-referent pairing
opportunities. Let's see an example of this.

Why more may not always be harder...

Why more may not always be harder...

Suppose there are six objects total, the amount used in the Smith \& Yu (2008) experiment.

First, let's consider their condition, where two objects are shown at a time. Let's say we get three slides/scenes of data.

"manu" "colat"

Why more may not always be harder...
Suppose there are six objects total, the amount used in the Smith \& Yu (2008) experiment.

Now, let's consider a more compex condition, where four objects are shown at a time. Let's say we get three slides/ scenes of data.

Why more may not always be harder...

Why more may not always be harder...
Suppose there are six objects total, the amount used in the Smith \& Yu (2008) experiment.

Therefore, "manu" is 愘.

This shows us that having more things appear (and be named) at once actually offers more opportunities for the correct associations to emerge.

"manu" "colat"
"bosa"
"bosa"

Recap: Word-Meaning Mapping

Cross-situational learning, which relies on distributional information across situations, can help children learn which words refer to which things in the world.

One way to implement the reasoning process behind crosssituation learning is Bayesian inference.

Experimental evidence suggests that infants are capable of this kind of reasoning in controlled experimental setups.

Questions?

Use the remaining time to work on HW2 and the review questions for word meaning. You should be able to do up through question 5 on HW2 and up through question 4 on the review questions.

