

## Announcements

Be working on structure review questions

HW3 returned on Tuesday June 1

Please fill out online evaluation forms for this class! :)


Universal Grammar: Principles \& Parameters

Parameters: Constrained variation across languages. Children must learn which option their native language uses.
Japanese/Navajo

Basic word order: Subject Object Verb

Postpositions:
Noun Phrase Postposition
Possessor before Possessed
Possessor Possession

| Universal Grammar: Principles \& Parameters |  |
| :---: | :---: |
| Parameters: Constrained variation across languages. Children must learn which option their native language uses. |  |
| Edo/English |  |
| Basic word order: Subject Verb Object |  |
| Prepositions: <br> Preposition Noun Phrase | Subject Verb NP Object |
| Possessed before Possessor <br> Possession Possessor |  |

## Universal Grammar: Principles \& Parameters

At this level of structural analysis (parameters), languages differ vary minimally from each other. This makes language structure much easier for children to learn. All they need to do is set the right parameters for their language, based on the data that are easy to observe.
Japanese/Navajo
Language Variation: Summary
While languages may differ on many levels, they have many similarities at
the level of language structure (syntax). Even languages with no
shared history seem to share similar structural patterns.
One way for children to learn the complex structures of their language is
to have them already be aware of the ways in which human languages
can vary. Nativists believe this is knowledge contained in Universal
Grammar. Then, children listen to their native language data to decide
which patterns their native language follows.
Languages can be thought to vary structurally on a number of linguistic
parameters. One purpose of parameters is to explain how children
learn some hard-to-notice structural properties.

| But what are linguistic parameters really? How do they work? |
| :--- |
| What exactly are they supposed to do? |

## Parameters

A parameter is meant to be something that can account for multiple observations in some domain.

Parameter for a statistical model: determines what the model expects to observe in the world in a variety of situations

Parameter for our minds (and language): determines what we expect to observe in the world in a variety of situations

## Statistical Parameters

The normal distribution is a statistical model that uses two parameters: - $\mu$ for the mean - $\sigma$ for the standard deviation


If we know the values of these parameters, we can make predictions about the likelihood of data we rarely or never see.

## Statistical Parameters <br> Suppose this is a model of how many minutes late you'll be to class. Let's use the model with $\mu=0$, and $\sigma^{2}=$ 0.2. (blue line) <br> 

How likely are you to be 5 minutes late, given these parameters?

Not very likely! We can tell this just by knowing the values of the two statistical parameters. These parameter values allow us to infer the likelihood of some observed behavior.

## Linguistic Parameters

Under the nativist perspective, a linguistic parameter is an innate, language-specific abstraction that connects to many structural properties about language.

Example from last time: the "subject" parameter

| French |
| :--- |
| Subject Verb |
| *Verb |
| *Verb Subject |
| Requires special action for |
| embedded subject |
| questions. |
| Not okay to leave out |
| expletive subject "it". |

Italian
Subject Verb
Verb
Verb Subject

Does not require special
action for embedded
subject questions.
Okay to leave out expletive
subject "it".

Why Hard-To-Learn Structures Are Easier
Let's label these structural properties.


## Linguistic Parameters: Useful

This is useful for acquisition because a child can learn a parameter's value by observing many different examples and many different structures.

This can be helpful for hard-to-learn structures.


Why Hard-To-Learn Structures Are Easier
Let's assume they are all connected to parameter P , which can take one of two values: a or b.


## Why Hard-To-Learn Structures Are Easier

How do we learn whether P4 shows behavior a or b? One way is to observe many instances of P4.


## Why Hard-To-Learn Structures Are Easier

But what if P4 occurs very rarely? We might never see any examples of P4.


Why Hard-To-Learn Structures Are Easier
Step 1: Observe P1, P2, P3, or P5. In this case, all the observed examples of these structures are behavior a.


## Why Hard-To-Learn Structures Are Easier

Step 2: Use this knowledge to set the value of parameter $P$ to a.


Why Hard-To-Learn Structures Are Easier
Step 3: Since parameter $P$ is connected to $P 4$, we can predict that P4 will also show behavior a - even though we've never seen any examples of it! (We can also infer P3 and P5 the same way.)


## What are some real parameters?

Morphology: the Compounding parameter (Snyder 1995, 2001, 2002)

- connected property: transitive resultative

English is allows transitive resultative constructions: John beat the iron flat.

Spanish does not allow transition resultative constructions: Juan golpeó el hierro (*plano).
John beat the iron flat

## What are some real parameters?

Morphology: the Compounding parameter (Snyder 1995, 2001, 2002)

- connected property: transitive resultative
- connected property: separable particle

English allows separable particle constructions: Mary lifted the box up.

Spanish does not allow separable particle constructions: María levantó la caja (*arriba)
Mary lifted the box up



An example of the problem: metrical phonology

Metrical phonology:
What tells you to put the EMphasis on a particular SYLlable
Process speakers use:
Basic input unit: syllables
Larger units formed: metrical feet The way these are formed varies from anguage to language. Only syllables in metrical feet can be stressed.

Stress assigned within metrical feet The way this is done also varies from language to language.

Observable Data: stress contour of word


A Brief Tour of Parametric Metrical Phonology Are syllables differentiated?

No: system is quantity-insensitive (QI)
$\mathbf{s} \quad \mathbf{s} \quad \mathbf{s}$
CVV CV CCVC
lu di crous



| A Brief Tour of Parametric Metrical Phonology <br> Are all syllables included in metrical feet? <br> Yes: system has no extrametricality (Em-None) |
| :---: |

## A Brief Tour of Parametric Metrical Phonology

```
Are all syllables included in
metrical feet?
    Yes: system has no extrametricality (Em-None)
    (llr
    No: system has extrametricality (Em-Some)
```

    Only allowed \# of exclusions: 1
    Only allowed exclusions:
        Leftmost or Rightmost syllable
    Leftmost syllable
    excluded: Em-Left
        ( ... )
    L H L
    V VC V
    a gen da
    Rightmost syllable
    excluded: Em-Right
        ( ...) )
    H L H
    VV V VC
    lu di crous
    
## A Brief Tour of Parametric Metrical Phonology

```
What direction are metrical feet constructed?
Two logical options
    From the left:
    Metrical feet are constructed from the
    left edge of the word (Ft Dir Left)
```



```
\(\mathrm{H} \quad \mathrm{L} \quad \mathrm{H}\) u di crous
```

From the right:
Metrical feet are constructed from the right edge of the word (Ft Dir Right)

## A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size?
Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if there are any (Unbounded).

A Brief Tour of Parametric Metrical Phonology
Are metrical feet unrestricted in size?
Yes: Metrical feet are unrestricted,
delimited only by Heavy syllables if
there are any (Unbounded).
Ft Dir Left $\longrightarrow$
L L L H L
(L L L H L
( $\mathrm{L} \stackrel{\mathrm{L}}{\mathrm{L}} \mathrm{L}$ ) ( H L
$(\mathrm{L} L \mathrm{~L})(\mathrm{H} \quad \mathrm{L})$

## A Brief Tour of Parametric Metrical Phonology

```
Are metrical feet unrestricted in size?
    Yes:Metrical feet are unrestricted,
    delimited only by Heavy syllables if
    there are any (Unbounded).
Ft Dir Left }\longrightarrow \leftarrow Ft Dir Righ
(L L L)(H L)
    L L L H L
    LLLHL
    LLLLH)(L)
    (LL亡LH)(L)
```


## A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size？


Yes：Metrical feet are unrestricted，
delimited only by Heavy syllables if there are any（Unbounded）．

## （L L L H）（L）

（L L L L L） （s s s s s）
No：Metrical feet are restricted（Bounded）．
The size is restricted to 2 options： 2 or 3 ．

## A Brief Tour of Parametric Metrical Phonology

```
Are metrical feet unrestricted in size?
```

    Yes: Metrical feet are unrestricted,
    delimited only by Heavy syllables if
    there are any (Unbounded).
    
（L L L）（H L）
（L L L H）（L）

LL L
（LL゙しL L）
s s s s s）
s sts s s）

## A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size？


> Yes: Metrical feet are unrestricted, delimited only by Heavy syllables if there are any（Unbounded）．

## （L L L H）（L）

（L L L L L）
（s s s s s）
No：Metrical feet are restricted（Bounded）．
The size is restricted to 2 options： 2 or 3 ．
$\xrightarrow{\mathrm{Ft}} \xrightarrow{\text { Dir Left }}$
$\xrightarrow{\text { Left }}$

| $x$ | $x$ x |
| :---: | :---: |
| $\downarrow$ |  |
| $(x \times)_{j}(x$ | $(x \times x)(x$ |
| $(\mathrm{x} x)(\mathrm{x}$ ） | $(\mathrm{x} x$ x）$(\mathrm{x})$ |

units per foot（Bounded－3）
$x x_{1} x$
$(x \quad x \quad x)(x$
$(x \quad x \quad x)(x)$

## A Brief Tour of Parametric Metrical Phonology

```
Are metrical feet unrestricted in size?
```



```
(L L L)(H L)
Yes: Metrical feet are unrestricted, delimited only by Heavy syllables if there are any (Unbounded).
(L L L H) (L)
(L L L L) (S S S S S)
No: Metrical feet are restricted (Bounded).
The size is restricted to 2 options: 2 or 3 .
The counting units are restricted to 2 options:
syllables or moras.
\(\left.\left(\begin{array}{lll}x & x\end{array}\right) \quad \mathrm{x}\right) \quad \mathrm{B}-2\) \((x \times x)(x) \quad B-3\)
```


## A Brief Tour of Parametric Metrical Phonology



$(\mathrm{L} L \mathrm{~L})(\mathrm{H} \quad \mathrm{L})$
Yes: Metrical feet are unrestricted, delimited only by Heavy syllables if there are any (Unbounded).
(L L L H) (L)
(L L L L L) (S S S S S)
No: Metrical feet are restricted (Bounded).
The size is restricted to 2 options: 2 or 3 .
The counting units are restricted to 2 options: syllables or moras.
$\left(\begin{array}{ll}x & x\end{array}\right)\left(\begin{array}{ll}x & x\end{array} \quad\right.$ B-2
Ft Dir Left
Bounded-2
$\rightarrow\left(\begin{array}{lll}\mathrm{H} & \mathrm{L})(\mathrm{L} & \mathrm{H}\end{array}\right)$
(L L) (L H) $\leftarrow$ Count by syllables
( S S) (S S)

## A Brief Tour of Parametric Metrical Phonology

Are metrical feet unrestricted in size?

## $\bigcirc\left(L \quad L \quad\left(\begin{array}{ll}(H)\end{array}\right.\right.$

Yes: Metrical feet are unrestricted,
(L L L H) (L) delimited only by Heavy syllables if there are any (Unbounded).
(L L L L L) (S S S S S)

No: Metrical feet are restricted (Bounded).
The size is restricted to 2 options: 2 or 3 .
The counting units are restricted to 2 options:
syllables or moras.
$\left(\begin{array}{ll}x & x\end{array}\right)\left(\begin{array}{ll}x & x\end{array} \quad\right.$ B-2
Count by syllables Ft Dir Left Count by moras ( $\left.\begin{array}{lll}\mathbf{x} & \mathbf{x} & \mathbf{x}\end{array}\right)(\mathbf{x})$ B-3
$\begin{array}{ll}\begin{array}{l}\text { Count by syllables } \\ \text { (Bounded-Syllabic) }\end{array} & \text { Bounded-2 }\end{array} \begin{aligned} & \text { Count by moras } \\ & \text { (Bounded-Moraic) }\end{aligned}$
$\left(\begin{array}{ll}\mathrm{H} & \mathrm{L})(\mathrm{L}\end{array} \mathrm{H}\right) \underset{\text { compare }}{\longleftrightarrow}(\mathrm{H})(\mathrm{L} L)(\mathrm{H})$

## A Brief Tour of Parametric Metrical Phonology

Within a metrical foot, which syllable is stressed?
Leftmost:
Stress the leftmost syllable (Ft Hd Left) (H) (L L) (H)
(H) (L L) (H)

Rightmost
Stress the rightmost syllable (Ft Hd Right) (H) (L L) (H)

Are syllables
treated differently
from one another?

| Yes. | H | L | H |
| :--- | :---: | :---: | :---: |
|  | VC | CV | CVC |
| VC syllables are | em | pha | sis |
| Heavy. |  |  |  |


| Generating a Stress Contour |  |
| :---: | :---: |
|  | Process speaker uses to generate stress contour |
| Are any syllables not included in metrical feet? |  |
| Yes. ( $\ldots$ ) |  |
| Rightmost syllable is H L H <br> not included in metrical VC CV CVC <br> foot. em pha sis |  |




## Summary: Linguistic Parameters

Linguistic parameters are similar to statistical parameters in that they are abstractions about the observable data. For linguistic parameters, the observable data are language data.

Parameters make acquisition easier because hard-to-learn structures can be learned by observing easy-to-learn structures that are connected to the same parameters.

Still, even with parameters, acquisition can be hard because a child has to figure out which parameter values produce the observable data, which isn't always easy.

