Ling 151/Psych 156A:
 Acquisition of Language II

Lecture 23
Structure IV

Announcements

Be working on HW8 and the structure review questions

Final review this Friday 3/16/18

Final exam next Friday 3/23/18 between 1:30 and 3:30pm (taken online through Canvas EEE).

Consider taking more language science classes in the future!

Learning with parameters

vs. constraints
metrical phonology

」 a DO ra ble KI tty

 X A do Ra ble X a DO ra BLE X ki TTY

Learning with parameters vs. constraints

」 a DO ra ble
KI tty
JOC to pus K oc TO PUS ki TTY X oc to PUS

Learning with parameters vs. constraints

KI tty $\sqrt{ }$ OC to pus X oc TO PUS ki TTY a DO ra BLE

Our underlying knowledge representation of the metrical phonology system allows us to generate these metrical stress preferences.

Our underlying knowledge representation of the metrical phonology system allows us to generate these metrical stress preferences.
https://www.youtube.com/watch?v=MdId9wnMNg8\&feature=youtu.be 2:03-3:00: Metrical stress

Underlying knowledge representations

Account for word-level stress patterns

Observable data: stress contour
OCtopus

Underlying representation?

Points of agreement:

Use metrical feet:
Units \geq syllables
but (often) smaller than words

(...) (.........)
$\begin{array}{lll}\text { VC V VC } \\ \text { ak } & \text { Ə } & \text { US }\end{array}$ ak tə pus 4…..IPA oc to pus

Underlying knowledge representations

Account for word-level stress patterns

Observable data: stress contour
OCtopus

Underlying representation?

Points of cross-linguistic variation:

What metrical feet are allowed

How stress interacts with metrical feet

$$
\begin{aligned}
& \text { VC V VC } \\
& \text { ak } \begin{array}{c}
\text { V } \\
\text { ak tə p ps } \\
\text { oc to pus }
\end{array}
\end{aligned}
$$

Account for word-level stress patterns

Observable data: stress contour
OCtopus

Underlying representation?

Points of cross-linguistic variation:
https://www.youtube.com/watch?v=MdId9wnMNg8\&feature=youtu.be 5:20-6:04: Points of variation

Underlying knowledge representations

Account for word-level stress patterns

Observable data: stress contour
OCtopus

Points of disagreement:
Underlying grammar =?

Knowledge representation options

Parameters whose values must be set

Knowledge representation options

Parameters whose values must be set

Knowledge representation options

Violable constraints that must be ranked

Knowledge representation options

Violable constraints that must be ranked

Underlying knowledge representations

Parameters

HV: Halle \& Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters \& 3 sub-parameters
Hypothesis space: 156 grammars

Correct grammar builds compatible contour

Foot headedness

Quantity sensitivity

Underlying knowledge representations

Parameters

HV: Halle \& Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters \& 3 sub-parameters
Hypothesis space: 156 grammars

Correct grammar builds compatible contour

This grammar, comprised of particular parameter values, generates the correct stress contour.
$\left(\begin{array}{ll}\mathrm{H} & \mathrm{L}) \mathrm{H} \\ \mathrm{OC} \text { to pus }\end{array}\right.$

Underlying knowledge representations

Parameters

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Correct grammar builds compatible contour

Word layer end rule
Stress analysis direction

Syllable weight

Underlying knowledge representations

Parameters

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Parameter values used:
Bot, Em-RtCons, VC-H, FtDir-Rt, PL-Strong, MorTro, DF-Strong, WLER-Rt

Correct grammar builds compatible contour

This grammar, comprised of particular parameter values, generates an incorrect stress contour.

...which are the values of the English grammar. Pearl 2016, Pearl, Ho, \& Detrano 2016

Underlying knowledge representations

Constraints

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

Premise: Many different candidates for a word's stress representation and contour are generated and then ranked according to which constraints are violated. Violating higher-ranked constraints is worse than violating lower-ranked constraints.

Higher Lower

Pearl 2016, Pearl, Ho, \& Detrano 2016

Underlying knowledge representations

Constraints

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

https://www.youtube.com/watch?v=MdId9wnMNg8\&feature=youtu.be 1:29-2:40: Intro to constraint ranking

Underlying knowledge representations

Constraints

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

Grammar = ranked ordering of all constraints

Underlying knowledge representations

Constraints

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

Official grammars for languages are often described as partial orderings of constraints.

Underlying knowledge representations

Constraints

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

This means the "grammar" for a language is often a set of the possible rankings (grammars) that obey those orderings.

Ex: The English "grammar" is compatible with 26 rankings.

Pearl 2016, Pearl, Ho, \& Detrano 2016

Underlying knowledge representations

Constraints

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

Underlying knowledge representations

Constraints

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

Principle (Rooting): All words must have stress

A sample grammar that is a version of the English "grammar":
(OC to) (PUS)
(OC to) pus
(oc TO) (PUS)
oc (TO pus)

Underlying knowledge representations

Constraints

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

Only one candidate left, and it has a compatible contour.

Sample candidates
A sample grammar that is a version of the English "grammar":

(OC to) pus

OC (TOpus)

Underlying knowledge representations

Constraints

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

A sample grammar that is a version of the English "grammar":

English "grammar"

Knowledge representation comparison

HV: 5 parameters \& 3 sub-parameters
Hypothesis space: 156 grammars

Hayes: 8 parameters
Hypothesis space: 768 grammars

OT: 9 violable constraints
Hypothesis space: 362,880 grammars

Knowledge representation comparison

These representations have some similarities, but aren't obviously using identical variables.

How do we choose among these representations and their English versions?

Knowledge representation comparison

Answer: Let's see how learnable they are from the English data children typically encounter!

Knowledge representation comparison

Acquisition goal: Identify the grammar that can account for the word-level stress patterns in the language

Knowledge representation comparison

Observable data: stress contour
All representations: use metrical feet based on syllable rimes

Knowledge representation comparison

Observable data: stress contour
All representations: use metrical feet based on syllable rimes

Parametric inference:
Does this set any values?

Pearl 2016, Pearl, Ho, \& Detrano 2016

Knowledge representation comparison

Observable data: stress contour
All representations: use metrical feet based on syllable rimes

OT inference:
Does this implicate any constraint rankings?

Pearl 2016, Pearl, Ho, \& Detrano 2016

Learning English

English metrical phonology is non-trivial to learn because there are many data that are ambiguous for which parameter value or constraint ranking they implicate.

This is generally a problem for acquisition (poverty of the stimulus = the data are compatible with many hypotheses).

Learning English

Non-trivial because there are many irregularities. This is less common for acquisition - usually there aren't a lot of exceptions to the system being acquired.

Learning English

irregularities

Interactions with morphology (Chomsky \& Halle 1968, Hayes 1982, Kiparsky 1979)

Example: Adding productive morphology doesn't change the stress pattern, even though all grammars base their stress patterns on the syllables present in the word.

EARly
EARlier
PREtty
PREttiest

senSAtion
senSAtional
senSAtionally

Learning English

irregularities

Interactions with syntactic category (Hammond 1999, Hayes 1982, Cassidy \& Kelly 2001, Christiansen \& Monaghan 2006)

Stress contours may be different across syntactic categories, even though the syllabic word form doesn't change.

NOUNS
CONduct
DEsert
SUspect

VERBS
conDUCT VC VCC deSERT
suSPECT

Syllabic word form

V VCC
V VCC

Learning English

These irregularities can cause multiple stress contours to be associated with a syllabic word form. This is problematic for the grammars in these knowledge representations...

Syllabic word form: V VV

Kl tty	a WAY	UHOH
Vvv	v VV	V VV

Learning English

These irregularities can cause multiple stress contours to be associated with a syllabic word form. This is problematic for the grammars in these knowledge representations, since a grammar can only generate a single stress contour per syllabic word form...

Syllabic word form: V VV

Foot directionality
a WAY
v VV
V VV

Learning English

These irregularities can cause multiple stress contours to be associated with a syllabic word form. This is problematic for the grammars in these knowledge representations, since a grammar can only generate a single stress contour per syllabic word form or select a single stressed syllabic word form as the best candidate.

Syllabic word form: V VV

Select	KI tty	a WAY	UH OH
one of these...	V vv	v VV	V VV

Learning English

Upshot of multiple stress contours: No one grammar can account for all the stressed words in the input.

$$
\begin{array}{lll}
\text { Syllabic word form: } & \text { VV } & \\
\text { Kl tty } & \text { a WAY } & \mathrm{UH} \mathrm{OH} \\
\text { V vv } & \vee \mathrm{VV} & \mathrm{VVV}
\end{array}
$$

But how big of a problem is this in English child-directed speech?

Learning English

multiple stress contours = pretty big problem

Analysis of Brent corpus (CHILDES database): 4780 word types (99,968 tokens) of American English speech directed at children between the ages of 6 and 12 months

Syllabic word form: V VV

KI tty
V vV
a WAY
v VV

UH OH
V VV

Multiple stress contours

HV: 73 of 123 syllabic word forms
Hayes: 86 of 149 syllabic word forms
OT: 166 of 452 syllabic word forms

\square
This occurs a lot!

Learning English

multiple stress contours = pretty big problem

Syllabic word form: V VV

KI tty
V vv
a WAY
v VV

UH OH
V VV

Acquisition success: Identify the grammar that can account for_the word-level stress patterns in the language
a good portion of

This isn't unreasonable: A grammar is useful because it provides a compact representation of some aspect of the data. Even if it doesn't cover all the data, covering some is helpful.

Knowledge representation comparison

Computational-level analysis

Pearl 2016, Pearl, Ho, \& Detrano 2016

Knowledge representation comparison

Working premise: Rational learners

Knowledge representation comparison

Once we define the acquisitional intake, we can then ask which grammar in the hypothesis space defined by the knowledge representation is best, assuming a rational learner that will choose the grammar compatible with
 the most data.

Knowledge representation comparison

It turns out that all three English grammars are compatible with 49-59\% of the data in English child-directed speech.

Not too bad!

Knowledge representation comparison

It turns out that all three English grammars are compatible with 49-59\% of the data in English child-directed speech.

Not too bad...but can we do better?

Knowledge representation comparison

It turns out that all three English grammars are compatible with 49-59\% of the data in English child-directed speech.

Knowledge representation comparison

Previous working assumption: The learner will try to learn a grammar that can account for all the data encountered.

But we know that's impossible, because of the multiple stress contours!

$$
\begin{array}{lll}
\text { KI tty } & \text { a WAY } & \text { UH OH } \\
V \mathrm{vv} & v \mathrm{VV} & \mathrm{~V} V \mathrm{~V}
\end{array}
$$

Knowledge representation comparison

Updated working assumption: The learner will try to learn a grammar that can account for all the productive data encountered (Legate \& Yang 2012).

Productive = the one
 you use when producing a novel word form

Acquisitional intake = only productive data because those are the predictable, rule-based data.

Knowledge representation comparison

Syllabic word form:
V VV

Tolerance Principle

A formal way for identifying if there is a dominant rule for a set of items is the Tolerance Principle (Yang 2005, Legate \& Yang 2012). This is used to estimate how many exceptions a rule can tolerate in a set before it's no longer useful for the learner to have the rule.

If there are too many exceptions, it's better not to have a rule and learn patterns on an individual item basis instead of having a rule that keeps getting violated.

Tolerance Principle

The number of exceptions a rule can tolerate for a set of N items is

$$
\frac{N}{\ln (N)}
$$

(Yang 2005, Legate \& Yang 2012)
$\frac{N}{\ln (N)} \quad$ Tolerance Principle

For every syllable word form with multiple stress contours, the learner could assess whether any of those contours is the dominant one (the "rule" for that syllable word form), using the Tolerance Principle.

$\frac{N}{\ln (N)} \quad$ Tolerance Principle

If one contour is dominant, the learner should focus on accounting for that pattern, since it's regular and productive. The grammar should be able to generate it. The other contours can be ignored for purposes of learning the grammar.

$\frac{N}{\ln (N)} \quad$ Tolerance Principle

If no contour is dominant, the learner should ignore this syllable word form for the purposes of learning the grammar since there is no obvious regularity to account for.

$\frac{N}{\ln (N)} \quad$ Tolerance Principle

Productive data filter in action

$\frac{N}{\ln (N)}$
 Tolerance Principle

HV

Hayes

$\frac{N}{\ln (N)} \quad$ Tolerance Principle

HV

Hayes

$\frac{N}{\ln (N)}$
 Tolerance Principle

HV

Hayes

$\frac{N}{\ln (N)} \quad$ Tolerance Principle

HV

Hayes

English grammar.

$\frac{N}{\ln (N)} \quad$ Tolerance Principle

HV

Hayes

but good for the

$\frac{N}{\ln (N)} \quad$ Tolerance Principle

HV

Hayes

$\frac{N}{\ln (N)} \quad$ Tolerance Principle

HV

Hayes

The Tolerance Principle looks at the word types for each stress pattern. Each type represents an individual item that might follow the regular stress pattern rule (if there is one).

$\frac{N}{\ln (N)} \quad$ Tolerance Principle

HV

Hayes

It doesn't matter how frequently a type appears (which is what "tokens" indicates).

Tolerance Principle

Tolerance Principle

HV

Hayes

How many exceptions are allowed?
$506 / \ln (506)=81$
$\frac{N}{\ln (N)}$

Tolerance Principle

HV

Hayes

How many exceptions
are allowed?
$506 / \ln (506)=\mathbf{8 1} \quad \frac{N}{\ln (N)}$

If this is the dominant pattern,
too many exceptions:
$325+19>81$

Tolerance Principle

HV

Hayes

If this is the dominant pattern, too many exceptions:

$$
162+19>81
$$

How many exceptions
are allowed?
$506 / \ln (506)=81 \quad \frac{N}{\ln (N)}$

Tolerance Principle

HV

Hayes

How many exceptions
are allowed?
$506 / \ln (506)=\mathbf{8 1} \quad \frac{N}{\ln (N)}$

If this is the dominant pattern,
way too many exceptions:
$162+325>81$

Tolerance Principle

HV

Learner conclusion: No dominant stress pattern, so none of these syllable word form data should be used to learn the English grammar.

$$
\frac{N}{\ln (N)}
$$

Tolerance Principle

HV

Hayes

This will end up helping both grammars, since they won't be penalized for the patterns they can't account for.

$$
\frac{N}{\ln (N)}
$$

$\frac{N}{\ln (N)} \quad$ Tolerance Principle

$\frac{N}{\ln (N)} \quad$ Tolerance Principle

These items are bad for all English grammars.

$\frac{N}{\ln (N)} \quad$ Tolerance Principle

These items are good for most English grammars (21/26).

$\frac{N}{\ln (N)} \quad$ Tolerance Principle

These items are good for a few English grammars (5/26).

Tolerance Principle

How many items should the stress "rule" apply to?
$\mathbf{N}=\mathbf{2 5}+\mathbf{3 1 6}+14=355$

$$
\frac{N}{\ln (N)}
$$

Tolerance Principle

How many exceptions are allowed?
$355 / \ln (355)=60$

$$
\frac{N}{\ln (N)}
$$

Tolerance Principle

How many exceptions are allowed?
$355 / \ln (355)=60$

pattern, too many
exceptions:
$316+14>60$

Tolerance Principle

How many exceptions are allowed?
$355 / \ln (355)=60$
$\frac{N}{\ln (N)}$

If this is the dominant pattern,
NOT too many exceptions:
$25+14<60$

Tolerance Principle

How many exceptions are allowed?
$355 / \ln (355)=60$

Pearl 2016, Pearl, Ho, \& Detrano 2016

Tolerance Principle

How many exceptions are allowed?
$355 / \ln (355)=60$

$$
\frac{N}{\ln (N)}
$$

Under the OT syllable representation, there is a dominant stress pattern for this word form. Therefore, this pattern should be accounted for by the English grammar and included in
 the acquisitional intake.

Unfortunately, for the OT English constraint ranking, this is the only pattern the English grammars can't account for....this means a learner using the productivity filter would have even more trouble learning.

Knowledge representation comparison

Syllabic word form:
V VV

Knowledge representation comparison

Now it turns out that all three English grammars are compatible with 63-87\% of the data in productive English child-directed speech.

Not too bad!
And definitely an improvement over 49-59\%!

Knowledge representation comparison

Now it turns out that all three English grammars are compatible with 63-87\% of the data in productive English child-directed speech.

But how does this compare to other possible grammars in the hypothesis space?

Knowledge representation comparison

Now it turns out that all three English grammars are compatible with 63-87\% of the data in productive English child-directed speech.

It turns out that this is worse compatibility than tens (HV), hundreds (Hayes), or tens of thousands (OT) of other possible grammars.

Uh oh!!

Knowledge representation comparison

Now it turns out that all three English grammars are compatible with 63-87\% of the data in productive English child-directed speech.

This means the best grammar options for English data aren't the ones currently proposed for English.

Which ones do better?

Knowledge representation comparison

Other options (differing very slightly) are much more easily learnable - these grammars have much higher English child-directed speech data coverage when a productive data filter is in place: 84-93\%.

Knowledge representation comparison

And two of these other options are better than 96-99\% of all the other grammars available! This makes them much more easily learnable.

Implication: Maybe these are a better description of the
 knowledge representation for the English metrical phonology grammar.

Knowledge representation comparison

By modeling acquisition, we provide support for these two theories of English representation in metrical phonology.

Recap

Linguistic knowledge can be represented by different types of abstract knowledge, such as linguistic
 parameters or linguistic constraints.

There are many cases where multiple options have been proposed for a knowledge representation, and acquisition modeling can be used to evaluate the options.

For learning English metrical phonology, one important aspect is a productive data filter, because there are so many exceptions.

One principled way to implement a productive data filter is with the Tolerance Principle.

Questions?

You should be able to do all the questions on the structure review questions and all of HW8.

Three knowledge representations

Parametric systems

HV: Halle \& Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters \& 3 sub-parameters
Hypothesis space: 156 grammars

Foot headedness
Quantity sensitivity

Extrametricality

Grammar = Set of parameter \& sub-parameter values

Foot directionality

Three knowledge representations

Parametric systems

HV: Halle \& Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters \& 3 sub-parameters
Hypothesis space: 156 grammars

Foot directionality

oc to pus

Three knowledge representations

Parametric systems

HV: Halle \& Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters \& 3 sub-parameters
Hypothesis space: 156 grammars

Foot directionality

oc to pus
Quantity sensitivity
Are syllables all identical, or are they differentiated by syllable weight (into Heavy and Light syllables)?

Three knowledge representations

Parametric systems

HV: Halle \& Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters \& 3 sub-parameters
Hypothesis space: 156 grammars

Foot directionality

oc to pus

Extrametricality
Are all syllables included in the larger units of metrical feet, or are some excluded?

Three knowledge representations

Parametric systems

Foot directionality

Foot directionality
Are feet constructed from the left or from the right?

Three knowledge representations

Parametric systems

HV: Halle \& Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters \& 3 sub-parameters
Hypothesis space: 156 grammars

Foot directionality

Boundedness

How big are metrical feet?

Three knowledge representations

Parametric systems

HV: Halle \& Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters \& 3 sub-parameters
Hypothesis space: 156 grammars

Foot directionality

Foot headedness
Which syllable in a foot is stressed?

Three knowledge representations

Parametric systems

HV: Halle \& Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters \& 3 sub-parameters
Hypothesis space: 156 grammars

Foot directionality

Correct grammar builds

 compatible contour
OCtopus

This grammar, comprised of particular parameter values, generates the correct stress contour.

OC to pus

Parameter values used:
Quantity sensitive, VC syllables = Heavy, Extrametricality on rightmost syllable, Feet built from the right, Foot = 2 syllables, Leftmost syllable in foot stressed

Three knowledge representations

Parametric systems

HV: Halle \& Vergnaud 1987, Dresher 1999, Pearl 2011
5 parameters \& 3 sub-parameters
Hypothesis space: 156 grammars

Correct grammar builds

 compatible contour

Foot directionality

This grammar, comprised of particular parameter values, generates the correct stress contour.
($\mathrm{H} \quad \mathrm{L}$) H

OC to pus

Parameter values used:
QS-VC-H, Em-Rt, FtDir-Rt, B-2-Syl, FtHd-Left

...which are the values of the English grammar.

Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Correct grammar builds compatible contour

Word layer end rule

Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Correct grammar builds compatible contour

(...feet first...)
oc to pus

Stress analysis direction
Are metrical feet created before word-
level stress is assigned to the edge
syllables or after?

Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Extrametricality
Are syllables on the edge (or parts of
syllables) excluded from metrical feet?

Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Syllable weight
Syllables are distinguished into Heavy and Light. Are syllables ending in VC (like oc) Heavy or Light?

Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Foot directionality
Are metrical feet constructed from the left
or the right?

Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Parsing locality

Is one Light syllable skipped between metrical feet?

Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Foot inventory
How big are metrical feet?
Where does the stress fall within them?

Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Correct grammar builds compatible contour

OCtopus

$(H)(L \quad L)$
oc to pu®

Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Word layer end rule
Where does word-level stress go if there are multiple stressed syllables? Can leftover Light syllables have word-level stress?

Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Correct grammar builds

 compatible contourThis grammar, comprised of particular parameter values, generates an incorrect stress contour.

$$
\begin{aligned}
& (H)(\mathrm{L} \quad \mathrm{~L}) \\
& \text { OC TÓ pus }
\end{aligned}
$$

Parameter values used:
Bottom-up, Extrametricality on rightmost consonant, VC syllables = Heavy, Feet built from the right, Light syllables not skipped in between feet, Foot = Moraic trochee (2 moras with stress on leftmost), Single Light edge syllables not allowed to have stress, Rightmost syllable gets main stress

Three knowledge representations

Parametric systems

Hayes: Hayes 1995
8 parameters
Hypothesis space: 768 grammars

Correct grammar builds compatible contour

This grammar, comprised of particular parameter values, generates an incorrect stress contour.

$$
\begin{aligned}
& (H)(\mathrm{L} \quad \mathrm{~L}) \\
& \text { OC TÓ pus }
\end{aligned}
$$

Parameter values used:
Bot, Em-RtCons, VC-H, FtDir-Rt, PL-Strong, MorTro, DF-Strong, WLER-Rt

...which are the values of the English grammar.

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints

Best candidate for the

 correct grammar has a compatible contour

Premise: Many different candidates for a word's stress representation and contour are generated and then ranked according to which constraints are violated. Violating higher-ranked constraints is worse than violating lower-ranked constraints.

\square

C1	C2	C3	C4	
		*	*	
*		*		
	*	*		

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

Official grammars for languages are often described as partial orderings of constraints.

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000 9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

This means the "grammar" for a language is often a set of the possible rankings (grammars) that obey those orderings.

Ex: The English "grammar" is compatible with 26 rankings.

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

Pexporerer

Best candidate for the correct grammar has a compatible contour

Nonfinality

Should the final syllable not be in a metrical foot?
(OC to) (PUS)
(oc TO) (PUS)

oc (TO pus)

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

Parse- σ
Should all syllables be in metrical feet?

(OC to) pus
oc (TO pus)

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

Pronericier

Foot binarity
Should all metrical feet consist
of two units?
(OC to) (PUS)
(oc TO) (PUS)

Best candidate for the correct grammar has a compatible contour

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

Enconemerer
Foot binarity
Trochaic
Weight-to-Stress
Align left, Align right
*Sonorant nucleus

Trochaic
 Should metrical feet have stress on the leftmost syllable?

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

Weight-to-Stress (VV)
Should all VV syllables be stressed?
(ba BY)
(BA) by

(BA by)

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

Weight-to-Stress (VC)
Should all VC syllables be stressed?
oc (TO pus)

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

Align left
 \approx Should metrical feet include the leftmost syllable?

OC (TO pus)

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

Align right
 \approx Should metrical feet include the rightmost syllable?

(OC to) pus
oc (TO pus)

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

*Sonorant nucleus
Should syllables not have sonorants
($\mathrm{m}, \mathrm{n}, \mathrm{y}, \mathrm{l}, \mathrm{r}$) as the nucleus?

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

Sample candidates
A sample grammar that is a version of the English "grammar":
(OC to) (PUS)
(OC to) pus
(oc TO) (PUS)
oc (TO pus)

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

Next important: VV syllables are stressed.

Sample candidates
(OC to) (PUS)
(OC to) pus
(oc TO) (PUS)oc (TO pus)

Best candidate for the correct grammar has a compatible contour

A sample grammar that is a version of the English "grammar":

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000
9 violable constraints
Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

Only one candidate left, and it has a compatible contour.

A sample grammar that is a version of the English "grammar":

(OC to) pus

Three knowledge representations

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar \& Smolensky 2000 9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars
Principle (Rooting): All words must have stress

Nonfinality, Parse-б
Foot binarity
Trochaic
Weight-to-Stress
Align left, Align right
*Sonorant nucleus

Best candidate for the correct grammar has a compatible contour

Knowledge representation comparison

HV: 5 parameters \& 3 sub-parameters
Hypothesis space: 156 grammars

Hayes: 8 parameters
Hypothesis space: 768 grammars

OT: 9 violable constraints
Hypothesis space: 362,880 grammars

English instantiations

HV: 5 parameters \& 4 sub-parameters
Hypothesis space: 156 grammars

Hayes: 8 parameters
Hypothesis space: 768 grammars

OT: 9 violable constraints
Hypothesis space: 362,880 grammars
(English = 26 grammars)

Knowledge representation comparison

HV: 5 parameters \& 3 sub-parameters
Hypothesis space: 156 grammars

Hayes: 8 parameters
Hypothesis space: 768 grammars

Each representation assumes certain syllabic distinctions.

OT: 9 violable constraints
Hypothesis space: 362,880 grammars

Knowledge representation comparison

HV: 5 parameters \& 3 sub-parameters
Hypothesis space: 156 grammars
Syllabic distinctions: 3
(short, closed, long)

Hayes: 8 parameters
Hypothesis space: 768 grammars
Syllabic distinctions: 4
(short, potentially short, closed, long)

OT: 9 violable constraints
Hypothesis space: 362,880 grammars
Syllabic distinctions: 8
(short, sonorant, 4 closed variants, long, super-long)

