# Ling 151/Psych 156A: <br> Acquisition of Language II 

Lecture 16
Syntax II

## Announcements

Be working on HW6 (due: 2/26/18)

Be working on review questions for syntax \& sentences

## Syntax: wh-dependencies



## Syntax: wh-dependencies

This kitty was bought as a present for someone.

Lily thinks this kitty is pretty.


## What's going on here?

Who does Lily think the kitty for is pretty?

What does Lily think is pretty, and who does she think it's for?

## Syntax: wh-dependencies

## What's going on here?

There's a dependency between the wh-word who and where it's understood (the gap)


This dependency is not allowed in English.

One explanation: The dependency crosses a "syntactic island" (Ross 1967)


## Syntax: wh-dependencies

## What's going on here?

 syntactic island
http://www.thelingspace.com/episode-66

$$
0: 39-1: 34
$$

https://www.youtube.com/watch?v=01uH4XfJx3g


## Syntax: wh-dependencies

$\qquad$ is pretty?


Jack is somewhat tricksy.
He claimed he bought something.
$\qquad$


## Syntax: wh-dependencies

syntactic island (Ross 1967)

Who does Lily think the kitty for $\qquad$ is pretty?
What did Jack make the claim that he bought $\qquad$ ?


Jack is somewhat tricksy.
He claimed he bought something.
Elizabeth wondered if he actually did and what it was.

What did Elizabeth wonder whether Jack bought $\qquad$ ?


## Syntax: wh-dependencies

syntactic island (Ross 1967)

Who does Lily think the kitty for $\qquad$ is pretty?

What did Jack make the claim that he bought $\qquad$ ?

What did Elizabeth wonder whether Jack bought $\qquad$ ?


Jack is somewhat tricksy.
He claimed he bought something.
Elizabeth worried it was something dangerous.

What did Elizabeth worry if Jack bought $\qquad$ ?


## Syntax: wh-dependencies

## What's going on here? syntactic island (Ross 1967)

Who does Lily think the kitty for $\qquad$ is pretty?

What did Jack make the claim that he bought $\qquad$ ?

What did Elizabeth wonder whether Jack bought $\qquad$ ?

What did Elizabeth worry if Jack bought $\qquad$ ?


Jack bought something.
Elizabeth met him afterwards.


Lily asks Elizabeth about it.


## Syntax: wh-dependencies

## What's going on here? <br> $\square$ syntactic island (Ross 1967)

Who does Lily think the kitty for $\qquad$ is pretty?

What did Jack make the claim that he bought $\qquad$ ?

What did Elizabeth wonder whether Jack bought $\qquad$ ?

What did Elizabeth worry if Jack bought $\qquad$ ?

What did you meet the pirate who bought $\qquad$ ?

What did that Jack bought $\qquad$ surprise you?


## Syntax: wh-dependencies

## What's going on here? <br>  syntactic island (Ross 1967)

Who does Lily think the kitty for $\qquad$ is pretty?
What did Jack make the claim that he bought $\qquad$ ?

What did Elizabeth wonder whether Jack bought $\qquad$ ?


What did Elizabeth worry if Jack bought $\qquad$ ?

What did you meet the pirate who bought $\qquad$ ?
What did that Jack bought $\qquad$ surprise you ?

What did you buy a kitty and $\qquad$ ?

Jack bought two things - a kitty and something else.


Elizabeth wants to know about the other thing.

## Syntax: wh-dependencies

## What's going on here? <br>  syntactic island (Ross 1967)

Who does Lily think the kitty for $\qquad$ is pretty?

What did Jack make the claim that he bought $\qquad$ ?

What did Elizabeth wonder whether Jack bought $\qquad$ ?


What did Elizabeth worry if Jack bought $\qquad$ ?

What did you meet the pirate who bought $\qquad$ ?

Jack bought a specific kind of kitty.


Which did you buy $\qquad$ kitty?


Elizabeth wants to know about the kind.

## Syntax: wh-dependencies

What's going on here?
syntactic island (Ross 1967)
$\qquad$ is pretty?
What did Jack make the claim that he bought $\qquad$ ?
What did Elizabeth wonder whether Jack bought $\qquad$ ?
What did Elizabeth worry if Jack bought $\qquad$ ?
What did you meet the pirate who bought $\qquad$ ?
What did that Jack bought $\qquad$ surprise you ?
What did you buy a kitty and $\qquad$ ?

## Important: It's not about the length of the dependency.

(Chomsky 1965, Ross 1967)

## Syntax: wh-dependencies

## What's going on here? <br> syntactic island

Who does Lily think the kitty for $\qquad$ is pretty?

What did Jack make the claim that he bought $\qquad$ ?

What did Elizabeth wonder whether Jack bought $\qquad$ ?

Elizabeth


What did that Jack bought $\qquad$ surprise you ?

What did you buy a kitty and $\qquad$ ?

Which did you buy $\qquad$ kitty ?


It's not about the length of the dependency.

## Syntax: wh-dependencies

## What's going on here? syntactic island

Who does Lily think the kitty for $\qquad$ is pretty?

What did Jack make the claim that he bought $\qquad$ ?

What did Elizabeth wonder whether Jack bought $\qquad$ ?

What did Elizabeth worry if Jack bought $\qquad$ ?

What did you meet the pirate who bought $\qquad$ ?
What did that Jack bought $\qquad$ surprise you ?

What did you buy a kitty and $\qquad$ ?
Which did you buy $\qquad$ kitty ?

What did Elizabeth think Jack said $\qquad$ ?



It's not about the length of the dependency.

## Syntax: wh-dependencies

## What's going on here? <br> syntactic island

Who does Lily think the kitty for $\qquad$ is pretty?
What did Jack make the claim that he bought $\qquad$ ?

What did Elizabeth wonder whether Jack bought $\qquad$ ?

What did Elizabeth worry if Jack bought $\qquad$ ?

What did you meet the pirate who bought $\qquad$ ?
What did that Jack bought $\qquad$ surprise you ?
What did you buy a kitty and $\qquad$ ?

Which did you buy $\qquad$ kitty ?

Jack

Syntax: wh-dependencies
syntactic island
$\qquad$ is pretty?


Adults judge these dependencies to be far worse than many others, including others that are very similar except that they don't cross syntactic islands (sprouse et al. 2012).


## Adult judgments: Target behavior

Adult knowledge as measured by acceptability judgment behavior
Sprouse et al. (2012) collected magnitude estimation judgments for four different islands, using a factorial definition that controlled for two salient properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded) - presence of an island structure (non-island vs. island)


Note: matrix is another word for "main" when talking about clause structure

## Adult judgments: Target behavior

Adult knowledge as measured by acceptability judgment behavior
Sprouse et al. (2012)
length of dependency (matrix vs. embedded)
presence of an island structure (non-island vs. island)

Complex NP island stimuli


Who $\qquad$ claimed that Lily forgot the necklace?
What did the teacher claim that Lily forgot $\qquad$ ?
Who $\qquad$ made the claim that Lily forgot the necklace? *What did the teacher make the claim that Lily forgot $\qquad$ matrix | non-island
embedded | non-island
matrix | island
embedded | island

## Adult judgments: Target behavior

Adult knowledge as measured by acceptability judgment behavior
Sprouse et al. (2012)
length of dependency (matrix vs. embedded)
presence of an island structure (non-island vs. island)

matrix | non-island embedded | non-island matrix | island embedded | island

## Adult judgments: Target behavior

Adult knowledge as measured by acceptability judgment behavior
Sprouse et al. (2012)
length of dependency (matrix vs. embedded)
presence of an island structure (non-island vs. island)

Whether island stimuli


Who $\qquad$ thinks that Jack stole the necklace?
What does the teacher think that Jack stole $\qquad$ ?
Who $\qquad$ wonders whether Jack stole the necklace? *What does the teacher wonder whether Jack stole ?

matrix | non-island<br>embedded | non-island<br>matrix | island<br>embedded | island

## Adult judgments: Target behavior

Adult knowledge as measured by acceptability judgment behavior
Sprouse et al. (2012)
length of dependency (matrix vs. embedded)
presence of an island structure (non-island vs. island)

Adjunct island stimuli

matrix | non-island embedded | non-island matrix | island
embedded | island

## Adult judgments: Target behavior

## syntactic island

Adult knowledge as measured by acceptability judgment behavior
Syntactic island = superadditive interaction of the two factors (additional unacceptability that arises when the two factors - length \& presence of an island structure - are combined, above and beyond the independent contribution of each factor).


## Adult judgments: Target behavior

## Adult knowledge as measured by acceptability judgment behavior

Sprouse et al. (2012): acceptability judgments from 173 adult subjects

syntax

## syntactic island

External Internal

Perceptual encoding


## Adult judgments: Target behavior

syntax

## syntactic island

## Adult knowledge as measured by acceptability judgment behavior

Sprouse et al. (2012): acceptability judgments from 173 adult subjects





External

Internal



Production

## Utterance <br>  <br> Extralinguistic systems

Inference
Acquisitional intake

Extralinguistic systems

Importance for acquisition: This is one kind of target behavior that we'd like a modeled child to produce.

## Adult judgments: Target behavior

Adult knowledge as measured by acceptability judgment behavior

Sprouse et al. (2012): acceptability judgments from 173 adult subjects



So if we're focusing on these wh-dependencies and that specific target state, what does children's input look like?


## Children's input

## Children's input really doesn't look so helpful

Data from five corpora of child-directed speech (Brown-Adam, Brown-Eve, Brown-Sarah, Suppes, Valian) from CHILDES (MacWhinney


## Children's input

syntactic island

## Children's input really doesn't look so helpful

Data from five corpora of child-directed speech = 31,247 utterances containing a wh-dependency
syntactic island

|  | MATRIX + <br> NON-ISLAND | EMBEDDED + <br> NON-ISLAND | MATRIX + <br> ISLAND | EMBEDDED + <br> ISLAND |
| :--- | :---: | :---: | :---: | :---: |
| Complex NP | 7 | 295 | 0 | 0 |
| Subject | 7 | 29 | 0 | 0 |
| Whether | 7 | 295 | 0 | 0 |
| Adjunct | 7 | 295 | 15 | 0 |



These kinds of utterances are fairly rare in general - the most frequent appears about 0.9\% of the time (295 of 31,247 .)

## Children's input

syntactic island

## Children's input really doesn't look so helpful

Data from five corpora of child-directed speech = 31,247 utterances containing a wh-dependency

| grammatical stimuli |  |  |  | syntactic island |
| :---: | :---: | :---: | :---: | :---: |
|  | MATRIX + NON-ISLAND | EMBEDDED + NON-ISLAND | MATRIX + ISLAND | EMBEDDED + ISLAND |
| Complex NP | 7 | 295 | 0 | 0 |
| Subject | 7 | 29 | $0$ | 0 |
| Whether | 7 | 295 | 0 | 0 |
| Adjunct | 7 | 295 |  | 0 |



Being grammatical doesn't necessarily mean an utterance will appear in the input at all.

## Children's input

syntactic island

## Children's input really doesn't look so helpful

Data from five corpora of child-directed speech = 31,247 utterances containing a wh-dependency
grammatical stimuli
syntactic island

|  | MATRIX + <br> NO/-ISLAND | EMBEDDED + <br> NON-ISLAND | MATRIX + <br> ISLAND | EMBEDDED + <br> ISLAND |
| :--- | :---: | :---: | :---: | :---: |
| Complex NP | 7 | 295 | 0 | 0 |
| Subject | 7 | 29 | 0 | 0 |
| Whether | 7 | 295 | 0 | 0 |
| Adjunct | 7 | 295 | 15 | 0 |



Unless the child is sensitive to very small frequencies, it's difficult to tell the difference between grammatical and ungrammatical dependencies sometimes...

## Children's input

syntactic island

## Children's input really doesn't look so helpful

Data from five corpora of child-directed speech = 31,247 utterances containing a wh-dependency
grammatical stimuli
syntactic island

|  | MATRIX + <br> NON-ISLAND | EMBEDDED + <br> NON-ISLAND | MATRIX + <br> ISLAND | EMBEDDED + <br> ISLAND |
| :--- | :---: | :---: | :---: | :---: |
| Complex NP | 7 | 295 | 0 | 0 |
| Subject | 7 | 29 | 0 | 0 |
| Whether | 7 | 295 | 0 | 0 |
| Adjunct | 7 | 295 | 15 | 0 |

...and impossible to tell no matter what the rest of the time. This looks like an induction problem for the language learner if we're looking for direct evidence in the input.


## Children's input

Children's input really doesn't look so helpful
Data from five corpora of child-directed speech = 31,247 utterances containing a wh-dependency grammatical utterances appeared, and the child has to generalize appropriately from this subset.


Important: Some grammatical utterances never appeared at all. This means that only a subset of

## Children's input

Data from five corpora of child-directed speech = 31,247 utterances containing a wh-dependency


So what kinds of dependencies are in the input?


## Children's input

So what kinds of dependencies are in the input?
Data from five corpora of child-directed speech = 31,247 utterances containing a wh-dependency

5.6\% What did she want to do __?
2.5\% What did she read from __?
1.1\% What did she think he said $\qquad$ ?


## Children's input

## The induction problem



## syntactic island



## Children's input

## The induction problem



Grammatical wh-questions
What did you see $\qquad$ ?
What __ happened?
Who did Jack think that Lily saw $\qquad$ ?
What did Jack think $\qquad$ happened?


syntactic island

## Children's input

## The induction problem



Ungrammatical wh-questions: Syntactic islands
Who does Lily think the kitty for $\qquad$ is pretty?

What did Jack make the claim that he bought $\qquad$ ?
What did Elizabeth wonder whether Jack bought $\qquad$ ?
What did Elizabeth worry if Jack bought $\qquad$ ?


## Learning strategies

Previous learning theories suggested children need syntactic-island-specific innate knowledge.


## Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)
A dependency cannot cross two or more bounding nodes.


## Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)
Bounding nodes come from a fixed set of phrase structure nodes (CP, IP, and/or NP). The ones that act as a bounding nodes for a given language must be learned.


## Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)

http://www.thelingspace.com/episode-66
https://www.youtube.com/watch?v=01uH4XfJx3g
1:34-4:20


## Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)


An alternative learning strategy proposes children need less-specific linguistic prior knowledge along with probabilistic learning.

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)


## Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)


Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure


## Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)


Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes


## Container nodes

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes


How to describe this dependency: What phrases is the gap inside but the wh-word isn't inside?

## Container nodes

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

A dependency can't cross a very low probability region of structure
Dependencies represented as a sequence of container nodes


## Container nodes

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

A dependency can't cross a very low probability region of structure
Dependencies represented as a sequence of container nodes


What did you see ?
$=$ What did [ip you [vp see ___]]?
$=\mid \mathrm{P}-\mathrm{VP}$

What $\qquad$ happened?
$=$ What [IP __ happened]?
= IP


## Container nodes

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

A dependency can't cross a very low probability region of structure
Dependencies represented as a sequence of container nodes


What did you see $\qquad$ ?
$=$ What did [ip you [vp see ___]]?
$=\mid \mathrm{P}-\mathrm{VP}$
What $\qquad$ happened?
$=$ What [ $\mathbb{P}$ __ happened]?
$=I \mathrm{P}$
What did she want to do $\qquad$ ?

$$
=\text { What did [ip she [vp want }[\mathrm{ip} \text { to }[\mathrm{vp} \text { do __ }]]]] \text { ? }
$$

= IP-VP-IP-VP


## Container nodes

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

## A dependency can't cross a very low probability region of structure

Dependencies represented as a sequence of container nodes


What did you see $\qquad$ ?
$=$ What did [ip you [vp see ___]]?
= IP-VP
What $\qquad$ happened?

$$
=\text { What }[\mathbb{P} \ldots \text { happened }] ?
$$

$$
=I \mathrm{P}
$$

What did she want to do $\qquad$ ?

$$
=\text { What did [Ip she [vp want [Ip to [vp do ___]]]]? }
$$

$$
=I P-V P-I P-V P
$$



What did she read from $\qquad$ ?
= What did [ıp she [vp read [pp from $\square$
= IP-VP-PP

## Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)


Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes


Container node: phrase structure node that contains dependency


## Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)


Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes


Sequence of container nodes characterizes dependencies


## Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)


Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes


Ungrammatical dependencies have low probability segments


## Learning strategies

+ syntax

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)


Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability region of structure Dependencies represented as a sequence of container nodes


Low probability container node sequences have to be learned for the language

## Learning strategies

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)


Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability sequence of container nodes


In common: Local structural anomaly is the problem

## Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

A dependency can't cross a very low probability sequence of container nodes


Implemented in an algorithmic-level learning model that learned from realistic samples of child-directed speech.


# Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015) 

A dependency can't cross a very low probability sequence of container nodes


Intuition: Learn what you can from the dependencies you do actually observe in the data and apply it to make a judgment about the dependencies you haven't seen before, like these syntactic islands.

A dependency can't cross a very low probability sequence of container nodes


Intuition: Learn what you can from the dependencies you do actually observe in the data and apply it to make a judgment about the dependencies you haven't seen before, like these syntactic islands.

That is, leverage a broader set of data to make syntactic generalizations.


Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

syntactic island

Wh ... $I_{C N 1} \ldots I_{\text {CN } 2} \ldots \quad\left[_{C 13} \ldots I_{C N 4} \ldots I_{\text {CN } 5} \ldots\right.$

What information is there to leverage exactly?


## Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)

syntactic island


What information is there to leverage exactly?

This relates to the strategy children use for learning and then generating predictions about the



## Strategy

(1) Pay attention to the structure of dependencies.

What did she want to do __?
$=$ What did [ip she [vp want [ip to [vp do __ ]]]]?
$=I P-V P-I P-V P$

syntactic island

## Wh ... $\left[_{C N 1} \ldots I_{\text {CN } 2} \ldots \quad\left[_{C 13} \ldots I_{C N 4} \ldots I_{\text {CN } 5} \ldots\right.\right.$ <br> What information is there to leverage exactly?

## Strategy

(1) Pay attention to dependency structure.
(2) Break these dependency structures into smaller pieces made up of three units (trigrams) that you can track the frequency of in the input you encounter.

$$
\begin{aligned}
& I P-V P=\quad I P= \\
& \text { begin-IP-VP begin-IP-end } \\
& \text { IP-VP-end } \\
& \text { IP-VP-IP-VP IP-VP-PP } \\
& \text { = begin-IP-VP } \quad=\text { begin-IP-VP } \\
& \text { IP-VP-IP } \\
& \text { VP-IP-VP } \\
& \text { IP-VP-PP } \\
& \text { VP-PP-end } \\
& \text { IP-VP-end }
\end{aligned}
$$

syntactic island

## Wh ... $\left[_{\text {CN1 }} \ldots\left[_{\text {CN } 2} \ldots \quad\left[_{\text {C } 13} \ldots\left[_{\text {CN } 4} \ldots\left[_{\text {CN } 5} \ldots\right.\right.\right.\right.\right.$ <br> What information is there to leverage exactly?

## Strategy

(1) Pay attention to dependency structure.
(2) Break these dependency structures into smaller pieces made up of three units (trigrams) that you can track the frequency of in the input you encounter.

| IP-VP $=$ | $I P=$ | begin-IP-VP $=86 / 225$ |
| :--- | :--- | :--- |
| begin-IP-VP | begin-IP-end | IP-VP-end $=83 / 225$ <br> IP-VP-end |
|  |  | begin-IP-end $=13 / 225$ |
|  | IP-VP-PP | IP-VP-IP $=6 / 225$ |
| IP-VP-IP-VP | begin-IP-VP | VP-IP-VP $=6 / 225$ |
| $=$ begin-IP-VP | IP-VP-PP | IP-VP-PP $=3 / 225$ |
| IP-VP-IP | VP-PP-end | VP-PP-end $=3 / 225$ |
| VP-IP-VP | $\ldots$ |  |

syntactic island


What information is there to leverage exactly?

## Strategy

(1) Pay attention to dependency structure.
(2) Break these dependency structures into smaller pieces made up of three units (trigrams) that you can track the frequency of in the input you encounter.


Note that some of these trigrams appear in multiple dependencies that commonly occur in children's input. This will be helpful!
syntactic island leverage exactly?

## Strategy

(1) Pay attention to dependency structure.
(2) Break dependency structures into trigrams that you can track the frequency of.
(3) Use trigram frequency to calculate the probability of that trigram occurring in a dependency.

$$
\begin{array}{ll}
\text { begin-IP-VP }=86 / 225 & \mathrm{p}(\text { begin-IP-VP })=0.38 \\
I P-V P-e n d=83 / 225 & \mathrm{p}(I P-V P-e n d)=0.37 \\
\text { begin-IP-end }=13 / 225 & \mathrm{p}(\text { begin-IP-end })=0.06 \\
I P-V P-I P=6 / 225 & p(I P-V P-I P)=0.03 \\
V P-I P-V P=6 / 225 & p(V P-I P-V P)=0.03 \\
I P-V P-P P=3 / 225 & p(I P-V P-P P)=0.01 \\
\text { VP-PP-end }=3 / 225 & p(V P-P P-e n d)=0.01
\end{array}
$$

## Strategy

(1) Pay attention to dependency structure.
(2) Break dependency structures into trigrams that you can track the frequency of.
(3) Calculate the trigram probability in a dependency.
(4) When you see a new dependency, break it down into its trigrams and then calculate its probability, based on the trigram probabilities.

What does Jack want $\qquad$
= What does [ip Jack [vp want __]]?
= IP-VP
$=$ begin-IP-VP
IP-VP-end
syntactic island

## Wh ... $\left[_{\text {CN1 }} \ldots I_{\text {CN2 }} \ldots \quad\left[_{\mathrm{C} 13} \ldots\left[_{\mathrm{CN} 4} \ldots I_{\mathrm{CN} 5} \ldots\right.\right.\right.$ <br> What information is there to leverage exactly?

## Strategy

(1) Pay attention to dependency structure.
(2) Break dependency structures into trigrams that you can track the frequency of.
(3) Calculate the trigram probability in a dependency.
(4) When you see a new dependency, break it down into its trigrams and then calculate its probability, based on the trigram probabilities.

What does Jack want to do that for $\qquad$
= What does [ip Jack [vp want [ip to [vp do that [pp for $\qquad$
= IP-VP-IP-VP-PP
$=$ begin-IP-VP

$$
\begin{aligned}
& p(I P-V P-I P-V P-P P)=p(\text { begin-IP-VP }) * p(I P-V P-I P) * p(V P-I P- \\
& V P)^{*} p(I P-V P-P P) * p(V P-P P-e n d) \\
& \quad=0.38 * 0.03 * 0.03 * 0.01 * 0.01=0.000000034
\end{aligned}
$$


syntactic island
What information is there to leverage exactly?

## Strategy

(1) Pay attention to dependency structure.
(2) Break dependency structures into trigrams that you can track the frequency of.
(3) Calculate the trigram probability in a dependency.
(4) When you see a new dependency, break it down into its trigrams and then calculate its probability, based on the trigram probabilities.

```
Subject island dependency
What do you think that the joke about
    _offended Jack?
= What do [iP you [vp think [cp that [iP [NP the joke [pp about __]]]]]] offended Jack?
= IP-VP-CP-NP-PP
= begin-IP-VP
        IP-VP-CP
        VP-CP-IP
            CP-IP-NP
                    IP-NP-PP
                    p(IP-VP-CP-IP-NP-PP) = p(begin-IP-VP)*p(IP-VP-CP)*p(VP-CP-
S)*p(CP-IP-NP)*p(IP-NP-PP)*p(NP-PP-end)
    =0.86*0.01*0.001*0.00*0.00*0.02 = 0.00
```

syntactic island


What information is there to leverage exactly?

## Strategy

(1) Pay attention to dependency structure.
(2) Break dependency structures into trigrams that you can track the frequency of.
(3) Calculate the trigram probability in a dependency.
(4) Break a new dependency into its trigrams and calculate its probability.
(5) Use calculated dependency probabilities as the basis for grammaticality judgments. Lower probability dependencies are dispreferred, compared to higher probability dependencies.

$$
\begin{aligned}
& p(I P-V P)=0.14 \\
& p(I P-V P-I P-V P-P P)=0.000000034 \\
& p(I P-V P-C P-I P-N P-P P)=0.00
\end{aligned}
$$

syntactic island


Use calculated dependency probabilities as the basis for grammaticality judgments. Lower probability dependencies are dispreferred, compared to higher probability dependencies.

For each set of island stimuli from Sprouse et al. (2012), we generate grammaticality preferences for the modeled learner based on the dependency's perceived probability and use this as a stand-in for acceptability.


Looking for superadditivity as a sign of syntactic island knowledge

# Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015) 



Use calculated dependency probabilities as the basis for grammaticality judgments. Lower probability dependencies are dispreferred, compared to higher probability dependencies.


Looking for superadditivity as a sign of syntactic island knowledge

## Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)



Use calculated dependency probabilities as the basis for grammaticality judgments. Lower probability dependencies are dispreferred, compared to higher probability dependencies.
non-island
island


IP


embedded

Each dependency is characterized by a container node sequence, whose probability can be calculated and then plotted.


Wh ... $\left[_{C N 1} \ldots\right]_{\text {CN } 2} \ldots \quad\left[_{C 13} \ldots I_{C N 4} \ldots I_{\text {CN } 5} \ldots\right.$

Superadditivity observed for all four islands - the qualitative behavior suggests that this learner has knowledge of these syntactic islands.

The Subjacency-ish representation that relies on container node trigram probabilities can solve this learning problem using this learning strategy.


Complex NP


Whether

syntax
syntactic island

Subject

matrix embedded

Adjunct


Subjacency-ish (Pearl \& Sprouse 20133, 2013b, 2015)


Complex NP
Note: We're careful to say "qualitative" behavior fit because there are lots of other factors that impact acceptability judgment behavior, and we've only modeled one (presumably) large part of them, which is the grammaticality of the dependency.




Whether

syntactic island

## Subject


matrix embedded

Adjunct


Subjacency-ish (Pear \& Sprouse 2013a, 2013b, 2015)


But is this all we can say?

No! One useful aspect of models is that we can look inside the modeled child to see why it's behaving the way that it is. (This is something that's harder to do with real children - that is, opening up their minds and seeing how they work.)


Complex NP


Whether

syntactic island

Subject

matrix embedded

Adjunct



## What's going on?

Why are the island-spanning dependencies so
 much worse than the grammatical ones?


## What's going on?

Why are the island-spanning dependencies so much worse than the grammatical ones?


Let's look inside them and see!


It turns out that each island-spanning dependency contains at least one very low probability container node trigram. So these are the relevant "island" representations.
a. Complex NP
(i) $*$ What did $\left[{ }_{I P}\right.$ the teacher $\left[{ }_{V P}\right.$ make $\left[{ }_{N P}\right.$ the claim ${ }_{C P_{\text {that }}}$ that $\left[{ }_{I P}\right.$ Lily ${ }_{V P}$ forgot __ $]$
(ii) start-IP-VP-NP-CP that -IP-VP-end
(iii) Low probaviility.

```
VP-NP-CP that
```

$\mathrm{NP}-\mathrm{CP}_{\text {that }}-\mathrm{IP}$


It turns out that each island-spanning dependency contains at least one very low probability container node trigram. So these are the relevant "island" representations.
b. Subject
(i) $*$ Who does $\left[_{I P}\right.$ Jack $\left[{ }_{V P}\right.$ think $\left[{ }_{C P_{\text {null }}}\left[{ }_{I P}\left[{ }_{N P}\right.\right.\right.$ the necklace $\left[{ }_{P P}\right.$ for $\left.\left.\ldots\right]\right]$ is expensive $\left.\left.]\right]\right]$ ?
(ii) start-IP-VP-CP ${ }_{\text {mull }}$-IP-NP-PP-end
(iii) L¢ probability:
$\mathrm{CP}_{\text {null }}-\mathrm{IP}-\mathrm{NP}$


It turns out that each island-spanning dependency contains at least one very low probability container node trigram. So these are the relevant "island" representations.
c. Whether
(i) * What does $\left[{ }_{I P}\right.$ the teacher $\left[V P\right.$ wonder $\left[{ }_{C P_{\text {whecther }}}\right.$ whether $\left[{ }_{I P}\right.$ Jack $[V P$ stole _ $]$
(ii) start-IP-VP-CP whether-IP-VP-end
(iii) Low probability:

IP-VP-CP whether VP-CP whether-IP $\mathrm{CP}_{\text {whether }}$-IP-VP


It turns out that each island-spanning dependency contains at least one very low probability container node trigram. So these are the relevant "island" representations.
d. Adjunct
(i) $*$ What does $\left[{ }_{I P}\right.$ the teacher $\left[{ }_{V P}\right.$ worry $\left[{ }_{C P_{i f}}\right.$ if ${ }_{[I P}$ Lily $\left[{ }_{V P}\right.$ forgot __ $\left.\left.\left.]\right]\right]\right]$ ?
(ii) start-IP-VP-CP ${ }_{i f}$-IP-VP-end
(iii) Lon probability:

IP-VP-CP ${ }_{i f}$
$\mathrm{VP}-\mathrm{CP}_{i f}$-IP
$\mathrm{CP}_{i f}$-IP-VP

## Learning strategies

N syntax

Subjacency (Chomsky 1973, Huang 1982, Lasnik \& Saito 1984)
can't cross $2+$ bounding nodes from a fixed set (CP, IP, and/or NP)


Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)
A dependency can't cross a very low probability sequence of container nodes

Wh ... $\quad\left[_{\mathrm{CN} 1} \ldots\left[_{\mathrm{CN} 2} \ldots \quad\left[_{\mathrm{C} 13} \ldots\left[_{\mathrm{CN} 4} \ldots\left[_{\mathrm{CN} 5} \ldots\right.\right.\right.\right.\right.$

In common: Local structural anomaly is the problem

The way Subjacency-ish implements this local structural anomaly can allow the development of syntactic island knowledge without relying on prior knowledge about bounding nodes and how many a dependency is limited
 to crossing.

## Learning strategies

Subjacency-ish (Pearl \& Sprouse 2013a, 2013b, 2015)


Less reliance on island-specific prior knowledge
syntactic island


## Recap

- Syntactic islands are pieces of structure that don't allow wh-dependencies to cross them, and children have to learn what the syntactic islands are for their language
- It isn't obvious from children's input how they could learn about these syntactic islands - they need to generalize from their experience with only a few types of dependencies.
- One way to overcome this problem is to rely on island-specific innate knowledge in the form of Subjacency.
- Another way is to combine probabilistic learning with knowledge of phrase structure nodes that's not just specific to learning about islands. This strategy encodes islands as pieces of structure that a wh-dependency has a very low probability of crossing, based on the child's language experience.


## Questions?



You should be able to do up through 2 on HW6 and up through 13 on the review questions for syntax \& sentences.

