Ling 151/Psych 156A:
 Acquisition of Language II

Lecture 14

Syntactic categorization II

Announcements

HW5 available (due 2/16/18)

Be working on review questions for syntactic categorization

Acquisition task

Syntactic Categorization

idea
glitter
unicorn
Noun
owl
kitty

Nouns behave similarly:
They can combine with certain types of words to make larger units (like Noun Phrases).

Syntactic Categorization

Nouns behave similarly:
They can combine with certain types of words to make larger units (like Noun Phrases).

Syntactic Categorization

Rule with category Noun = new phrases with words of category Noun

Categories give us expressive power This is very handy for generating new expressions we haven't heard before.

Syntactic Categorization

Rule with category Noun = new phrases with words of category Noun

Categories give us expressive power This is very handy for generating new expressions we haven't heard before.

Syntactic Categorization


```
[NP }->\mathrm{ Det + N]
```

penguin

Noun
owl

kitty

Rule with category Noun = new phrases with words of category Noun

Categories give us expressive power Because we can do this as adults, we use this expressive power as evidence that we as adults have categories.

Syntactic Categorization

penguin
Determiner + Noun ("the dax ")

Noun
owl

kitty

 wl
 Determiner + Noun ("the dax ")

```
[NP -> Det + N]
```

 idea
 unicorn

Syntactic Categorization

idea
unicorn
Noun ${ }_{\text {owl }}$
kitty

We have many categories in human language.
Some are open-class - it's easy to add new words to them.

Syntactic Categorization

idea

We have many categories in human language.
Some are open-class - it's easy to add new words to them.
[VP \rightarrow Negation $+V$]

It's not daxing

- it's dancing!


```
surprise stand
```

Verb dance
adore

Syntactic Categorization

idea
glitter
unicorn
Noun
kitty

We have many categories in human language.
Some are open-class - it's easy to add new words to them.
find Verb dance
adore

Syntactic Categorization

We have many categories in human language.
Some are closed-class - the words in them are fixed.
[VP \rightarrow Negation $+V$]
It's not daxing

- it's dancing!

Negation wouldn't can't won't

Syntactic Categorization

We have many categories in human language.
Some are closed-class — the words in them are fixed.

Syntactic Categorization

There's significant debate on when these categories develop.

Development of syntactic categories

Some studies suggest that syntactic category knowledge may already be in place around the age of two

- Determiners (like "the"), Nouns: Valian 1986, Valian, Solt, \& Stewart 2008
- Auxiliary verbs: Stromswold 1989, Rispoli, Hadley, \& Holt 2009, Rissman, Legendre, \& Landau 2013
- Verbs: Kowalski \& Yang 2012

Development of syntactic categories

Other studies suggest that it may appear significantly later:

- Determiners (like "the"), Nouns: Pine \& Lieven 1997, Meylan et al. 2017
- Auxiliary verbs: Wilson 2003, Theakston \& Lieven 2005, Theakston, Lieven, Pine, \& Rowland 2005, Theakston \& Lieven 2008, Theakston \& Rowland 2009
- Verbs: Tomasello 1992, Tomasello 2006

How can we tell?

Easy to observe: When children know individual words.

How can we tell?

Harder to observe: When children have recognized these words belong to categories.

How can we tell?

One indicator:
Knowledge about how one word combines with other words is transferred within the category.

How can we tell?

might
will Auxiliary
didn't
Negation
not
can't
could
can
should

One indicator:
Knowledge about how one word combines with other words is transferred within the category.

How can we tell?

might
will Auxiliary
didn't
Negation
not
can't
could
can
should

One indicator:
Knowledge about how one word combines with other words is transferred within the category.

How can we tell?

might
will Auxiliary
didn't not
Negation
idea

One indicator:
Knowledge about how one word combines with other words is transferred within the category.

...could surprise...

How can we tell?

might
will Auxiliary
didn't
Negation
not
can't
could
can
should

One indicator:
Knowledge about how one word combines with other words is transferred within the category.

...might surprise...

How can we tell?

might
will
didn't not
wouldn't
can't
idea

```
                                    owl
```

This causes the child to combine words of the same category with similar words, so that there's overlap in usage within a category.
...will adore...
...might surprise...
...would stand...
...would find... ...will surprise...
...will dance...
...might stand...
...would dance... ...could adore...

How can we tell?

didn't
 Negation

wouldn't
can't
idea

```
                                    owl
```

This overlap is something we can quantitatively assess to gauge productivity with respect to categories (Tomasello 1992, Pine \& Lieven 1997, Naigles, Hoff, \& Vear 2009, Yang 2010, 2011, 2013, Goldin-Meadow \& Yang 2016).
...will adore...
...might surprise...
...would stand...
...would find... ...will surprise...
...will dance...
...might stand...
...would dance... ...could adore...
might
will Auxiliary
should
could
can

How can we tell?

didn't
not
Negation
can't
wouldn't

Noun
penguin kitty

```
won't
won't
```

Premise: If children's usage shows enough productivity, as measured by overlap, this suggests they have rules that are based on the more abstract symbols like Noun, Verb, Auxiliary, and Negation.
...will adore...
...might surprise...
...would stand...
...would find... ...will surprise...
...will dance...
...might stand...
...would dance... ...could adore...

How can we tell?

Premise: If children's usage shows enough productivity, as measured by overlap, this suggests they have rules that are based on the more abstract symbols like Noun, Verb, Auxiliary, and Negation.

Productive rules based on categories

$$
\frac{\mathrm{VP} \rightarrow \text { Aux }+\mathrm{V}}{\text {...might surprise... }}
$$

How can we tell?

This contrasts with other alternatives for how to generate these combinations.

Semi-productive rules where some words come from categories and some words don't.

$$
\text { VP } \rightarrow \text { Aux + surprise }
$$

...might surprise...

How can we tell?

This contrasts with other alternatives for how to generate these combinations.

Semi-productive rules where some words come from categories and some words don't.

```
VP }->\mathrm{ might + V
```


...might surprise...

How can we tell?

This contrasts with other alternatives for how to generate these combinations.

Non-productive rules where word combinations are just amalgams memorized directly from the input because the child doesn't have categories.

How can we tell?

Representation options

$$
\text { Productive rules } \quad \mathrm{VP} \rightarrow \mathrm{Aux}+\mathrm{V}
$$

Non-productive rules

```
VP }->\mathrm{ might + surprise
```


...might surprise...

How can we tell?

Representation options

$$
\text { VP } \rightarrow \text { Aux + surprise }
$$

$$
\text { VP } \rightarrow \text { might }+ \text { surprise }
$$

```
VP }->\mathrm{ might + V
```

How much overlap do we expect to see if a child has categorybased productive rules?
...will adore...
...might surprise...
...would stand...
...would find... ...will surprise...
...will dance...
...might stand...
...would dance... ...could adore...

How can we tell?

Representation options

$$
\text { VP } \rightarrow \text { Aux + surprise }
$$

$$
\text { VP } \rightarrow \text { might }+ \text { surprise }
$$

$$
\text { VP } \rightarrow \text { might }+V
$$

For example, should we expect every verb to combine with every auxiliary?
...will adore...
...might surprise...
...would stand...
...would find... ...will surprise...
...will dance...
...might dance...
...might stand...
...would dance... ...could adore...

How can we tell?

Representation options

VP \rightarrow Aux + surprise

$$
\text { VP } \rightarrow \text { might }+ \text { surprise }
$$

$$
\text { VP } \rightarrow \text { might }+V
$$

Probably not. We don't say everything we know when we speak - we say things to communicate our intended meaning at the time.

For example, should we expect every verb to combine with every auxiliary?
...will adore...
...might surprise...
...would stand...
...would find... ...will surprise...
...will dance...
...might dance...
...might stand...
...would dance... ...could adore...

How can we tell?

In fact, it turns out naturalistic linguistic output shows power law behavior (a Zipfian distribution)...

verb	freq	rank
get	101	1
go	100	2
\ldots		
feel	8	58
\ldots		
dream	1	251
\ldots		

...will adore...
...might surprise...
...would stand...
...would find... ...will surprise... ...will dance...
...might stand...
...would dance... ...could adore...

How can we tell?

...where a few things are said very frequently...
frequency $\underbrace{\left.\begin{array}{llll|}\begin{array}{llll}\text { verb } & \text { freq } & \text { rank } \\ \text { get } & 101 & 1 \\ \text { go } & 100 & 2 \\ \ldots . & 8 & 58 \\ \text { feel } & 8 & \\ \ldots \\ \text { dream } & 1 & 251 \\ \ldots\end{array} & \\ \hline\end{array}\right)}_{\text {rank }}$
...will adore...
...might surprise...
...would stand...
...would find... ...will surprise...
...will dance...
...might stand...
...would dance... ...could adore...

How can we tell?

... and most things are said very infrequently.
frequency $\underbrace{\left.\begin{array}{llll|}\begin{array}{llll}\text { verb } & \text { freq } & \text { rank } \\ \text { get } & 101 & 1 \\ \text { go } & 100 & 2 \\ \ldots \\ \text { feel } & 8 & 58 \\ \ldots \\ \text { dream } & 1 & 251 \\ \ldots\end{array} & \\ \hline\end{array}\right)}_{\text {rank }}$
...will dance...
...might stand...
...would dance... ...could adore...

How can we tell?

One implication: We can't expect much overlap in combinatorial usage for words that only are used a

...will adore...
...might surprise...
...would stand...
...would find... ...will surprise...
...will dance...
...might stand...
...would dance... ...could adore...

How can we tell?

We need to somehow factor in that a child may know that combinatorial usage transfers to other words in the

How can we tell?

Bates, Pearl \& Braunwald, in prep.

What we can do: Computational-level analysis of children's productions, using formal metrics that take this into account and describe how children generate their utterances given their underlying representations

...will dance... ...will dance...
...will dance...

How can we tell?

Bates, Pearl \& Braunwald, in prep.

Underlying representations

$$
\text { VP } \rightarrow \mathrm{Aux}+\mathrm{V}
$$

$$
\text { VP } \rightarrow \text { will + dance }
$$

```
VP }->\mathrm{ will + V
```

```
VP }->\mathrm{ Aux + dance
```

Basic idea:
Compare the observed overlap in children's produced combinations against the expected overlap if a specific underlying representation were what children used to generate that combination.

How can we tell?

Bates, Pearl \& Braunwald, in prep.

Underlying representations

$$
\text { VP } \rightarrow \mathrm{Aux}+\mathrm{V}
$$

VP \rightarrow will + dance

```
VP }->\mathrm{ will + V
```

```
VP }->\mathrm{ Aux + dance
```

Calculating observed overlap
This is based on the child's productions.

If a word combines with more than one lexical item (ex: a verb combining with more than one auxiliary verb), overlap for that word $=1$.
...will dance...
...would dance...
...will dance...
...will dance...
overlap for dance = 1

How can we tell?

Bates, Pearl \& Braunwald, in prep.

Underlying representations

$$
\text { VP } \rightarrow \mathrm{Aux}+\mathrm{V}
$$

VP \rightarrow will + dance

```
VP }->\mathrm{ will + V
```

```
VP }->\mathrm{ Aux + dance
```

Calculating observed overlap
This is based on the child's productions.

If a word combines with only one lexical item (ex: a verb combining with only one auxiliary verb), overlap for that word $=0$.
...will dance...
...will dance...
...will dance...
...will dance...
overlap for dance $=0$

How can we tell?

Bates, Pearl \& Braunwald, in prep.

Underlying representations

$$
\text { VP } \rightarrow \mathrm{Aux}+\mathrm{V}
$$

VP \rightarrow will + dance

```
VP }->\mathrm{ will + V
```

```
VP }->\mathrm{ Aux + dance
```

Calculating observed overlap
This is based on the child's productions.

Observed overlap for words potentially from one category

$=\frac{\text { total overlap from all words }}{\text { total number of words }}$

How can we tell?

Bates, Pearl \& Braunwald, in prep.

Underlying representations

$$
\text { VP } \rightarrow \mathrm{Aux}+\mathrm{V}
$$

VP \rightarrow will + dance

```
VP }->\mathrm{ will + V
```

```
VP }->\mathrm{ Aux + dance
```

Calculating observed overlap
This is based on the child's productions.

Observed overlap for words potentially from one category

$$
=\frac{\text { total overlap from all words }}{\text { total number of words }}
$$

overlap(surprise) + overlap(stand) + overlap(find) + overlap(adore) + overlap(dance)

How can we tell?

Bates, Pearl \& Braunwald, in prep.

Underlying representations

$$
\text { VP } \rightarrow \mathrm{Aux}+\mathrm{V}
$$

VP \rightarrow will + dance

```
VP }->\mathrm{ will + V
```

```
VP }->\mathrm{ Aux + dance
```

Calculating observed overlap
This is based on the child's productions.

$\begin{aligned} & \text { Observed overlap for words } \\ & \text { potentially from one category }\end{aligned} \quad=\frac{\text { total overlap from all words }}{\text { total number of words }}$

adore

$$
1+1+0+1+0=3
$$

How can we tell?

Bates, Pearl \& Braunwald, in prep.

Underlying representations

$$
\text { VP } \rightarrow \mathrm{Aux}+\mathrm{V}
$$

VP \rightarrow will + dance

```
VP }->\mathrm{ will + V
```

```
VP }->\mathrm{ Aux + dance
```

Calculating observed overlap
This is based on the child's productions.
$\begin{aligned} & \text { Observed overlap for words } \\ & \text { potentially from one category }\end{aligned} \quad=\frac{\text { total overlap from all words }}{\text { total number of words }}$
surprise stand
find Verb $_{\text {dance }}$
adore

$$
\frac{3}{5}=0.6
$$

How can we tell?

Bates, Pearl \& Braunwald, in prep.

Underlying representations

$$
\text { VP } \rightarrow \text { Aux + V VP } \rightarrow \text { will + dance }
$$

...will dance...

```
VP }->\mathrm{ will + V
```

observed Aux Verb
$\begin{array}{lll}\text { overlap } & 0.5 & 0.6\end{array}$
Calculating expected overlap
This is based on what we think the child's underlying representations are.

How can we tell?

Bates, Pearl \& Braunwald, in prep.

Underlying representations

$$
\text { VP } \rightarrow \text { will + dance }
$$

...will dance...

```
VP }->\mathrm{ will + V VP }->\mathrm{ Aux + dance
```

observed Aux Verb $\begin{array}{lll}\text { overlap } & 0.5 & 0.6\end{array}$

Calculating expected overlap
If both words come from categories, we can calculate expected overlap using a formula developed by Yang (2011) that takes into account how frequently the child produces words of these categories.

How can we tell?

Bates, Pearl \& Braunwald, in prep.

Underlying representations

$$
\text { VP } \rightarrow \text { will + dance }
$$

...will dance...

```
\[
\text { VP } \rightarrow \text { Aux + dance }
\]
```

observed Aux Verb $\begin{array}{lll}\text { overlap } & 0.5 & 0.6\end{array}$

Calculating expected overlap
If both words come from categories, we can calculate expected overlap using a formula developed by Yang (2011) that takes into account how frequently the child produces words of these categories.
$\operatorname{Exp}_{\text {Prod }}=\frac{\sum_{a_{j} \in \text { Anch }} \text { expprod }_{a_{j}}}{\mid \text { Anch } \mid}$
expprod $_{a_{j}}=1+(U n k \mid-1)\left(1-p_{a_{j_{\text {out }}}}\right)^{S}-$

$$
\sum_{w_{i} \in U n k}\left(p_{w_{i_{\text {out }}}} p_{a_{j_{\text {out }}}}+1-p_{a_{j_{\text {out }}}}\right)^{S}
$$

How can we tell?

Bates, Pearl \& Braunwald, in prep.

Underlying representations

$$
\text { VP } \rightarrow \text { will + dance }
$$

...will dance...

$$
\text { VP } \rightarrow \text { will + V } \quad \text { VP } \rightarrow \text { Aux + dance }
$$

observed Aux Verb $\begin{array}{lll}\text { overlap } & 0.5 & 0.6\end{array}$

$$
\mathrm{VP} \rightarrow \mathrm{Aux}+\mathrm{V}
$$

If both words come from categories, we can calculate expected overlap using a formula developed by Yang (2011) that takes into account how frequently the child produces words of these categories.

How can we tell?

Bates, Pearl \& Braunwald, in prep.
Underlying representations

VP \rightarrow will + dance
expected
overlap

Aux Verb

0.7
0.8
observed Aux Verb

$$
\text { VP } \rightarrow \text { will + V }
$$

...will dance...

$$
\text { VP } \rightarrow \text { Aux + dance }
$$

Calculating expected overlap

How can we tell?

Bates, Pearl \& Braunwald, in prep.
Underlying representations
VP \rightarrow Aux + V
VP \rightarrow will + dance
expected
overlap

Aux Verb
0.7
0.8
observed Aux Verb
$\begin{array}{lll}\text { overlap } & 0.5 & 0.6\end{array}$
Calculating expected overlap

$$
\text { VP } \rightarrow \text { will + V }
$$

$$
\text { VP } \rightarrow \text { Aux + dance }
$$

If one word comes from a category and one word doesn't, we can calculate expected overlap using a formula adapted from Yang's that takes into account how frequently the child produces words of the one category and how frequently she heard words of the other category combine with it.

How can we tell?

Bates, Pearl \& Braunwald, in prep.
Underlying representations

$$
\text { VP } \rightarrow \mathrm{Aux}+\mathrm{V}
$$

expected overlap

Aux Verb
0.7
0.8
observed Aux Verb
$\begin{array}{lll}\text { overlap } & 0.5 & 0.6\end{array}$

Calculating expected overlap
If one word comes from a category and one word doesn't, we can calculate expected overlap using a formula adapted from Yang's that takes into account how frequently the child produces words
 of the one category and how frequently she heard words of the other category combine with it.

```
VP }->\mathrm{ will + V
\(\rightarrow\) Will
```

...will dance...

$$
\text { VP } \rightarrow \text { will + dance }
$$

How can we tell?

Bates, Pearl \& Braunwald, in prep.
Underlying representations

$$
\mathrm{VP} \rightarrow \mathrm{Aux}+\mathrm{V}
$$

$$
\text { VP } \rightarrow \text { will + dance }
$$

expected
overlap

Aux Verb
0.7
0.8
observed Aux Verb
$\begin{array}{lll}\text { overlap } & 0.5 & 0.6\end{array}$

$$
\text { VP } \rightarrow \text { Aux + dance }
$$

If one word comes from a category and one word doesn't, we can calculate expected overlap using a formula adapted from Yang's that takes into account how frequently the child produces words ...will dance...

Calculating expected overlap of the one category and how frequently she heard words of the other category combine with it.

How can we tell?

Bates, Pearl \& Braunwald, in prep.
Underlying representations

VP \rightarrow Aux + V
expected overlap

Aux Verb
0.7
0.8

$$
\text { VP } \rightarrow \text { will + dance }
$$

...will dance...

$$
\text { VP } \rightarrow \text { will + V }
$$

$$
\text { VP } \rightarrow \text { Aux + dance }
$$

If one word comes from a category and one word doesn't, we can calculate expected overlap using a formula adapted from Yang's that takes into account how frequently the child produces words of the one category and how frequently she heard words of the other category combine with it.

How can we tell?

Bates, Pearl \& Braunwald, in prep.

How can we tell?

Bates, Pearl \& Braunwald, in prep.

How can we tell?

Bates, Pearl \& Braunwald, in prep.
Underlying representations

observed Aux Verb $\begin{array}{lll}\text { overlap } & 0.5 & 0.6\end{array}$ Calculating expected overlap
expected overlap

observed	Aux	Verb
overlap	0.5	0.6

$$
\mathrm{VP} \rightarrow \mathrm{Aux}+\mathrm{V}
$$

Aux Verb
0.7
0.8

$$
\text { VP } \rightarrow \text { will + V }
$$

Aux Verb
0.9
0.7
...will dance...

$$
\text { VP } \rightarrow \text { Aux + dance }
$$

Aux Verb
0.5
0.6

If neither word comes from a category, we can calculate expected overlap using a formula from Yang (2010) that takes into account how frequently the child heard these words combine in the input.

$$
\begin{gathered}
\operatorname{Exp}_{N o t}=\operatorname{Obs}\left(\text { Phr }_{E x p_{N o t}}\right) \\
\operatorname{Phr}_{E x p_{N o t}}=S \text { phrases where } \\
\text { phr } \\
\text { with probability } p_{w_{i} a_{j_{i n}}}
\end{gathered}
$$

How can we tell?

Bates, Pearl \& Braunwald, in prep.

...will dance...

The underlying representation whose expected overlap best matches the observed overlap is the most likely representation the child has.

How can we tell?

Bates, Pearl \& Braunwald, in prep.
Underlying representations

$$
\mathrm{VP} \rightarrow \mathrm{Aux}+\mathrm{V}
$$

$$
\text { VP } \rightarrow \text { will + dance }
$$

Aux Verb
observed Aux Verb $\begin{array}{lll}\text { overlap } & 0.5 & 0.6\end{array}$
expected Aux Verb $\begin{array}{lll}\text { overlap } & 0.5 & 0.6\end{array}$

VP \rightarrow Aux + dance
...will dance...

$$
\text { VP } \rightarrow \text { will + V }
$$

Aux Verb

0.9
0.7

Here, it looks like a semi-productive representation where the Aux word comes from a category while the verb doesn't is the best match.

How can we tell?

Bates, Pearl \& Braunwald, in prep.
Underlying representations

Aux Verb
0.7
0.8
0.8
0.7

VP \rightarrow will + V
Aux Verb
$0.9 \quad 0.7$

$$
\text { VP } \rightarrow \text { will + dance }
$$

Aux Verb

observed	Aux	Verb
overlap	0.5	0.6
expected	Aux	Verb
overlap	0.5	0.6

VP \rightarrow Aux + dance
...will dance...

The development of syntactic categories

Bates, Pearl \& Braunwald, in prep.

Focus: categories in Verb Phrases

The development of syntactic categories

Bates, Pearl \& Braunwald, in prep.

Focus: categories in Verb Phrases...that appeared sufficiently frequently in this child's productions

Auxiliary Verb

Negation

Noun

Analyzing the utterances produced by a single American English child (L) between the ages of 20 and 24 months.

The development of syntactic categories

Bates, Pearl \& Braunwald, in prep.
Focus: categories in Verb Phrases...that
 appeared sufficiently frequently in this child's productions

Auxiliary
 Verb

Negation

Noun

Analyzing the utterances produced by a single American English child (L) between the ages of 20 and 24 months.

Child output: 2154 verb phrases
Child input: 2184 verb phrases from her mother

The development of syntactic categories

Bates, Pearl \& Braunwald, in prep.
Focus: categories in Verb Phrases...that appeared sufficiently frequently in this child's productions

Auxiliary
 Verb

Negation

Noun

Child output: 2154 verb phrases
L's verb usage appears to be typical, compared against
 a group of 93 children between 20 and 24 months from the American English CHILDES database

The development of syntactic categories

Bates, Pearl \& Braunwald, in prep.

Focus: categories in Verb Phrases...that appeared sufficiently frequently in this child's productions

Utterances most compatible with having adult-like closed-class categories, but not adult-like open-class categories.

VP \rightarrow Aux + dance
...will dance...

$$
\text { VP } \rightarrow \text { Neg + dance }
$$

...won't dance...

```
VP }->\mathrm{ penguin + dance
```

...penguin dance...

The development of syntactic categories

Bates, Pearl \& Braunwald, in prep.

Focus: categories in Verb Phrases...that appeared sufficiently frequently in this child's productions

This is much earlier than when previous studies have thought children develop closed-class categories!

The development of syntactic categories

Yang 2010, 2011

Focus: categories in Noun Phrases

$$
\text { NP } \rightarrow \text { Det Noun ...a penguin... }
$$

the
Determiner
$a(n)$
idea
glitter unicorn
Noun penguin

The development of syntactic categories

Yang 2010, 2011
Focus: categories in Noun Phrases
NP \rightarrow Det Noun ...a penguin...

Data: Child-produced utterances from six American English corpora of the CHILDES database (age range $1 ; 1$ to $5 ; 1$).

First 100, 300, and 500 productions from all children to capture earliest stage of language production which should (presumably) be the least productive.

The development of syntactic categories

Yang 2010, 2011

Yang evaluated a representation where both words come from categories.

Focus: categories in Noun Phrases

NP \rightarrow Det Noun

	Observed Overlap	Expected Overlap
First 100 utterances	21.8	19.6
First 300 utterances	29.1	26.7
First 500 utterances	34.2	32.3

This matches pretty well!

The development of syntactic categories

Yang 2010, 2011
Focus: categories in Noun Phrases

This contrasts with the representation where neither word comes from a category.
representation where
neither word comes from a
category.

NP \rightarrow a penguin

...a penguin...	
the	glitter ${ }^{\text {idea }}{ }_{\text {unicorn }}$
Determiner	Noun

	Observed Overlap	Expected Overlap	Expected Overlap
First 100 utterances	21.8	19.6	17.2
First 300 utterances	29.1	26.7	25.6
First 500 utterances	34.2	32.3	30.2

The development of syntactic categories

Yang 2010, 2011

Focus: categories in Noun Phrases

This suggests that for Noun Phrases, young children have created categories for both closed-class categories like Determiners and openclass categories like Nouns.

...a penguin...
NP \rightarrow Det Noun

The development of syntactic categories

Yang 2010, 2011
Focus: categories in Noun Phrases

Though it's probably worth evaluating representations where one word comes from a category and the other doesn't just to make sure...

Recap: Syntactic categorization

Productivity, as measured by the lexical overlap of words for a syntactic category, is one way to assess whether children seem to have knowledge of a particular syntactic category.

Natural language use seems to have a Zipfian distribution, where many combinations are rarely (or never) heard. This can make it hard to learn, and it can also make it hard to figure out what knowledge children have.

There are formal metrics for figuring out exactly how much overlap words should have if children have particular representations in their minds, given that language use has a Zipfian distribution.

Based on these metrics, it seems like children may attain knowledge of closed-class categories like Auxiliary, Negation, and Determiner earlier than previously thought.

Questions?

You should be able to do all the review questions for syntactic categorization and all of HW5.

