

The effect of language proficiency on patterns of epenthesis by Persian learners of English

Noah Khaloo

Department of Linguistics
University of California, San Diego

Connor Mayer

Department of Language Science University of California, Irvine

1. Background

Asymmetries in epenthesis

Illicit complex onsets are often repaired by epenthesis (Hall 2011)

Placement of epenthetic vowel differs based on onset type.

In Persian, /s/-stop, /s/- liquids, and /s/-nasal clusters are repaired with prothesis, and everything else with anaptyxis

Prothesis

/stap/ 'stop' → [es.tap]

/s/-initial clusters

Anaptyxis

/pliz/ 'please' → [pe.liz]

Other clusters

Are /s/-initial clusters different?

/s/-initial clusters also differ from obstruent + sonorant (OR) clusters in terms of their:

Articulation

/s/-intial clusters have **greater degrees of gestural overlap and stricter timing patterns** than OR clusters
(Pouplier et al. 2022)

Acquisition

Relative to OR clusters, /s/-initial clusters are:

- Acquired later in L1 acquisition (Geirut 1999)
- Repaired more frequently in L2 (Carlisle 2001)

<u>Perception</u>

Epenthesis within an /s/-initial cluster is more **perceptually disruptive** than within OR clusters (Fleischhacker 2001)

Open questions

Do L2 learners acquire /s/-initial onsets more slowly than other types of onsets?

What can this tell us about the status of these onsets?

2. Experimental study

Hypotheses

- 1. /s/-initial onsets are repaired with prothesis, others with anaptyxis
- 2. /s/-initial onsets undergo more epenthesis than other types
- 3. Higher English proficiency corresponds to less epenthesis
- 4. Learners improve more slowly at /s/-initial clusters

Participants 10 potivo Fore

19 native Farsi speakers (14M, 36-80 y.o.)

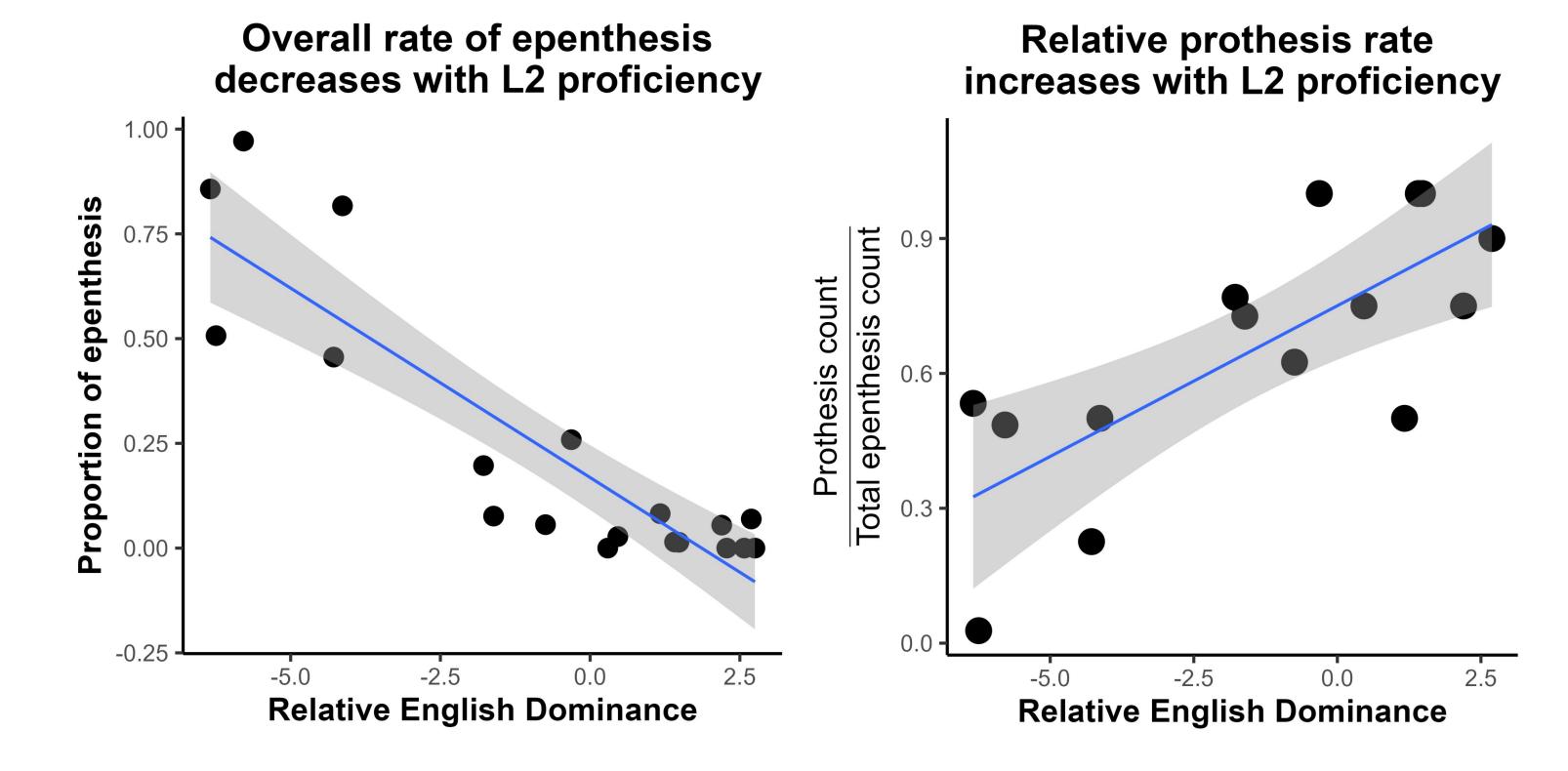
Experiment

- Produced 74 English words with complex onsets
- 2. English ability assessed with LEAP-Q

Relative English Dominance (RED)

LEAP-Q responses were aggregated to a single dimension called RED using Principal Components Analysis.

Analysis


Mixed-effects multinomial logistic regression model predicting epenthesis type (none, prothesis, anaptyxis) from (among others)

- Onset sonority ∆
- 2. Onset identity
- 3. Relative English Dominance (RED)

Random intercepts for participant and word

Results

Learners improve more slowly at /s/-stop clusters

3. Phonological modeling

Analyzed using MaxEnt OT (Goldwater & Johnson 2003)

- Weighted constraints → probability distributions
- Weights can be learned from data
- Compare models by likelihood of data and # of constraints

Key constraints (Fleischhacker 2001)

- 1. *Complex: Don't have complex onsets
- 2. **DEP-V/{S_T, S_N, S_L, T_R}**: Penalize vowel insertion in different contexts

/stap/		Pred. Freq.	Harmony	Dep-V/S_T <i>w</i> =11.32	*Complex w=2.31	L-Anchor <i>w=4.56</i>	
[stap]	0.87	0.90	4.05		1		
[estap]	0.13	0.10	6.30			1	
[setap]	0	0	16.94	1			

Scaling *Complex weights by RED of *j*th speaker $W_{*Complex-j} = W_{*Complex} - \rho * RED_{j}$

Model comparison

Model	LogLik	Weights	BIC	Parameters
*Complex, p All onset clusters are equally difficult	-759	10	1596	*Complex = 2.31 ρ = 0.5
*Complex-{S,T}, p /s/-initial and other clusters can have different difficulties	-654	11	1393	*Complex-S = 20.75 *Complex-T = 4.98 ρ = 0.5
*Complex-{S, T}, p-{S,T} /s/-initial clusters and other clusters can have different difficulties and rates of improvement.		12	1377	*Complex-S = 20.75 *Complex-T = 4.98 $\rho_s = 0.4$ $\rho_T = 0.6$

4. Discussion

<u>/s/-initial clusters are repaired more frequently and acquired more slowly by Persian speakers than other types of clusters</u>

Why are /s/-initial clusters hard?

Perceptual cost of anaptyxis into an /s/-initial cluster is high compared to OR clusters (Fleischhacker 2001)

Greater timing coordination required to generate desired outcome? (e.g. Pouplier et al. 2022)