Biomechanical Simulation of Lateral Asymmetry in Tongue Bracing

Biomechanical Simulation of Lateral Asymmetry in Tongue Bracing

Biomechanical Simulation of Lateral Asymmetry in Tongue Bracing

Biomechanical Simulation of Lateral Asymmetry in Tongue Bracing (in speech!)

Images from:

Bessi, F. (2016). Laterality in artistic gymnastics. *Biodinamica* 30 (1).

Images from:

Bessi, F. (2016). Laterality in artistic gymnastics. *Biodinamica* 30 (1).

Handedness may be the bestknown *lateral asymmetry*, but...

Images from:

Bessi, F. (2016). Laterality in artistic gymnastics. *Biodinamica* 30 (1).

Handedness may be the bestknown *lateral asymmetry*, but...

Images from:

Eyedness

Facedness

Handedness

Footedness

Right-handed

85

Right-footed

Images from: Borod J.C., Caron H.S., Koff E. (1981). Asymmetry of facial expression related to handedness, footedness, and eyedness: a quantitative study. Cortex. 1981 Oct;17(3):381-90. Left-handed Bessi, F. (2016). Laterality in artistic gymnastics. Biodinamica 30 (1).

Left-footed

What about tonguedness?

ambidextrus

Tongue Bracing

Speaking Tongues Are Actively Braced (Gick et al., 2017)

- Lateral bracing:
 - sides of tongue held against palate & upper molars
- Bracing maintained for 97.5% of running speech

Lateral bias/asymmetry observed (more releases on one side than the other)
 Q: Like other "-ednesses"! ...but which side is dominant?

Robustness of lateral tongue bracing under bite block perturbation (Liu et al. 2022)

- Perturbation study
 - Found lateral bracing is *necessary* for speech
- Biomechanical simulations
 - Identified bracing *agonist/antagonist* muscles

Background

This study:

Determine muscular dominance in lateral tongue bracing

- Q: In other "-ednesses," muscles activate on the *same side* as movements
 - Same for tongue?
- Biomechanical simulations of tongue muscle activation
- Effect of *hydrostatic* * properties of the tongue on lateral bracing

*(like a water balloon)

Methods

ArtiSynth biomechanical modeling platform (artisynth.org)
Tongue, jaw, palate and hyoid complex

96 virtual contact sensors detect tongue-palate contact

• Varied activation of left-side muscles

Methods

Agonists

Muscles that increase bracing

- Raise/widen tongue
- Posterior Genioglossus, Middle Genioglossus, Mylohyoid, Verticalis, Superior Longitudinal

Antagonists

Muscles that decrease bracing

- Lower/narrow tongue
- Anterior Genioglossus, Styloglossus, Hyoglossus, Transverse, Inferior Longitudinal

Preview of results:

Tongue muscle activations cause greater movements on the opposite side!

- 2083 / 2528 successful simulations
- ↑ Lagonist activation = ↑ L & R bracing

- 2083 / 2528 successful simulations
- 1 Lagonist activation = 1 L & R bracing ... but more so on the R (opposite) side

- 2083 / 2528 successful simulations
- <u>
 Lagonist</u> activation =
 <u>
 L & R bracing</u> ...but more so on the R (opposite) side
- \uparrow <u>Lantagonist</u> activation = \downarrow L & R bracing

- 2083 / 2528 successful simulations
- 1 Lagonist activation = 1 L & R bracing ... but more so on the R (opposite) side
- 1 Lantagonist activation = ↓ L & R bracing ... but more so on the R (opposite) side

Discussion

Bracing is enacted primarily by *contralateral* muscle activation > because of the muscular-hydrostatic properties of the tongue

The dominant side in tonguedness may be the *opposite* of other "-ednesses" > at least insofar as muscle activation matters

Thanks!

Do you have any questions?