Rethinking representations A log-bilinear model of phonotactics

Huteng Dai (Rutgers), Connor Mayer (UC Irvine), and Richard Futrell (UC Irvine)

Take-home messages

- A novel representational system: continuous features
- A log-bilinear model compatible with both continuous and discrete features
- Finding: In several cases, models with continuous representations outperformed their counterparts

ROADMAP

1. Phonotactic learning and features

- 2. A log-bilinear model of phonotactic learning
- 3. Model/feature comparison
- 4. Conclusions and future directions

Phonotactics

Restrictions on how sounds can be sequenced;

Phonotactics vary across languages and must be learned

• /st/ onset is acceptable in English, but not in Spanish

Gradient acceptability in phonotactics

Gradient well-formedness is often found in acceptability experiments. (e.g. Coleman & Pierrehumbert 1997, Albright 2009, Hayes et al. 2009, Daland et al. 2011)

blick >> [?]bwick >> *bnick >> **bzick

(Albright 2009)

This motivated **probabilistic** models of phonotactics

(Hayes & Wilson 2008, Futrell et al. 2017, Mayer & Nelson 2020; cf. Gorman 2013, Kahng & Durvasula 2023)

Why features?

Segmental generalizations often overlook sub-segmental properties

- b[+approximant] ([bj, br, bl]) is highly frequent
- No b[-approximant]
- This explains why [bw] >> [bn] even though both unattested in English

This motivates sub-segmental representations such as **phonological features**.

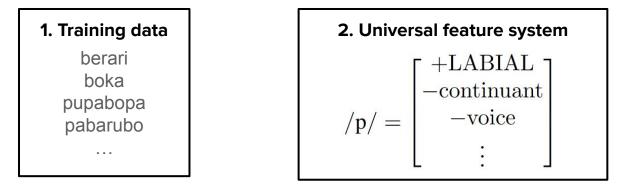
Traditional view of phonological features

- Universal: all languages described by same set of features
- Phonetically-based: reflect phonetic properties
- **Discrete:** values are +, -, or 0

$$/p/ = \begin{bmatrix} +LABIAL \\ -continuant \\ -voice \\ \vdots \end{bmatrix}$$

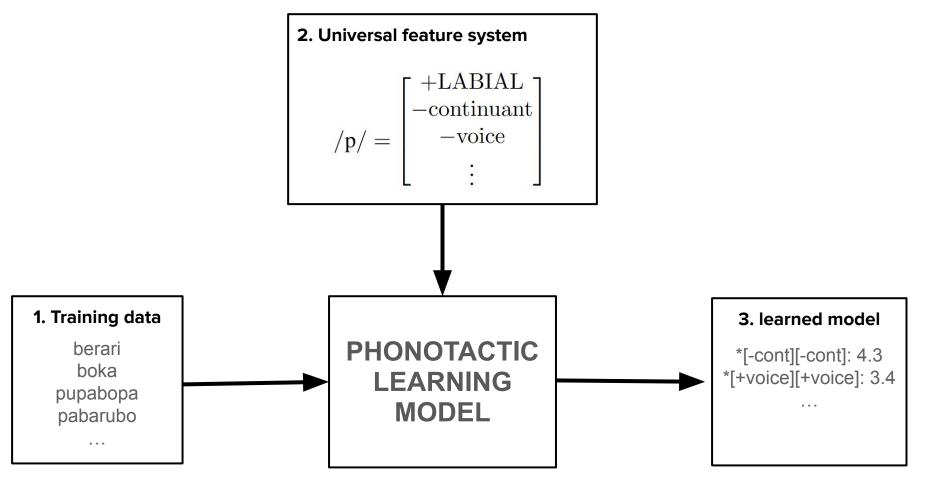
Traditional view of phonotactic learning

• Input: training data (lexicon) + universal feature system



- Output: learned model
- The learning succeeds if the learned model predicts a probabilistic distribution that matches the acceptability of nonce forms.

Traditional phonotactic learning with universal features



Challenge: processes of unnatural classes

Many phonological classes don't share phonetic properties. (Mielke 2008)

- (2) Evenki post-nasal nasalization (Mielke 2008; Nedjalkov 1997)
 - i. Evenki productive suffixation
 - a. /oron-vi/ oronmi 'my reindeer'
 - b. /ŋinakin-si/ ŋinakinni 'your dog'
 - c. /oron-gAt∫ in/ oronnot∫ in 'like a reindeer'
 Cf.
 - d. /amkin-du/ amkindu 'bed-dative'
 - e. /ekun-da/ ekunda 'somebody, something'
 - ii. Evenki nasalization $\{v, s, g\} \rightarrow \{m, n, n\}/ [+nasal]____$

Invent a new universal feature for every unnatural class?

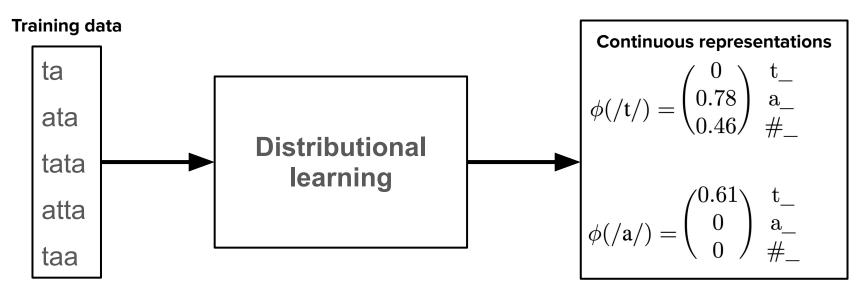
Our "Emergent" view of features

- Language-specific
- Learned or emergent
- **Distributional:** shared contexts (e.g. {v, s, g}/[-nasal]_) implies shared features;

(Mielke 2008, Nazarov 2014, 2016, Archangeli & Pulleyblank 2018, 2022, Gallagher 2019)

Distributional learning: continuous representations

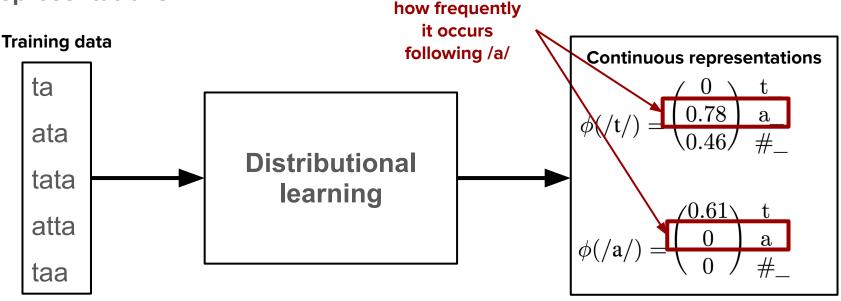
Distributional learning models produce **continuous (real-valued) representations**



(e.g. Goldsmith & Xanthos 2009, Mayer 2020, Nelson 2022, a.o.)

Distributional learning: continuous representations

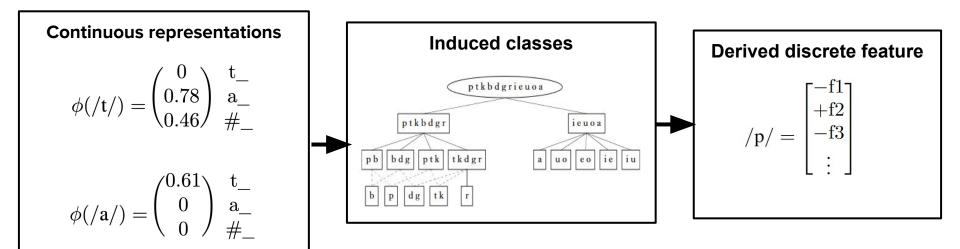
Distributional learning models produce **continuous (real-valued) representations**



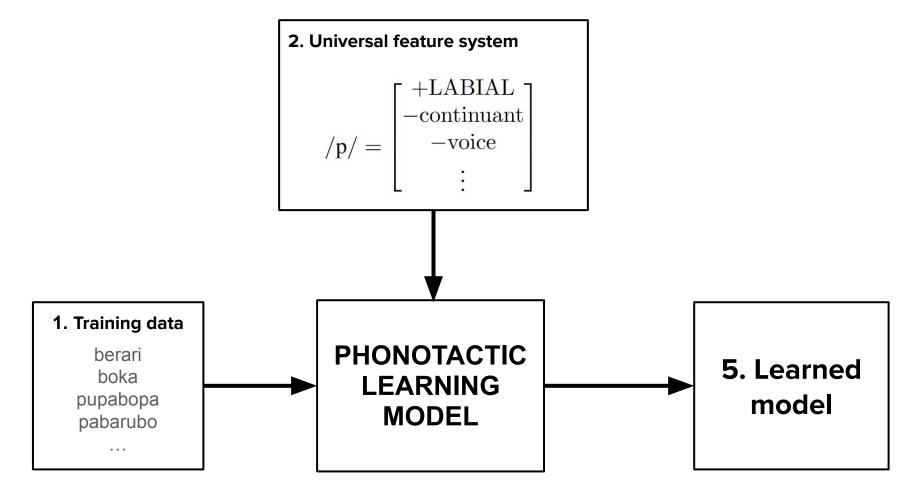
(e.g. Goldsmith & Xanthos 2009, Mayer 2020, Nelson 2022, a.o.)

Distributional learning: discretization

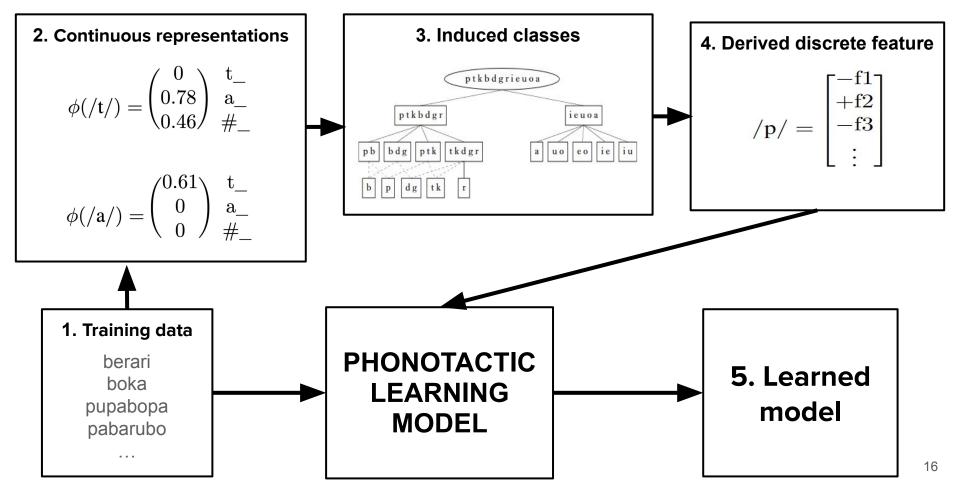
- 1. Clustering to produce classes (Goldsmith & Xanthos 2009, Mayer 2020)
- 2. Derive feature system from sets of classes (Mayer & Daland 2020)



Traditional phonotactic learning with universal features



Phonotactic learning with derived discrete features



Correlation with phonetic distinctions

Learned distributional representations can reflect phonetic distinctions;

(Goldsmith & Xanthos 2009, Mayer 2020)

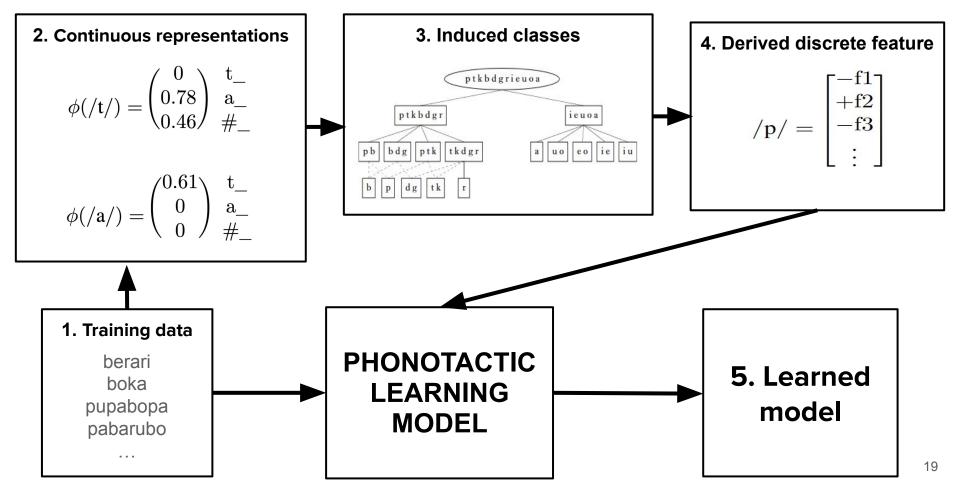
Perform comparably to phonetic features in phonotactic learning

(Nelson 2022)

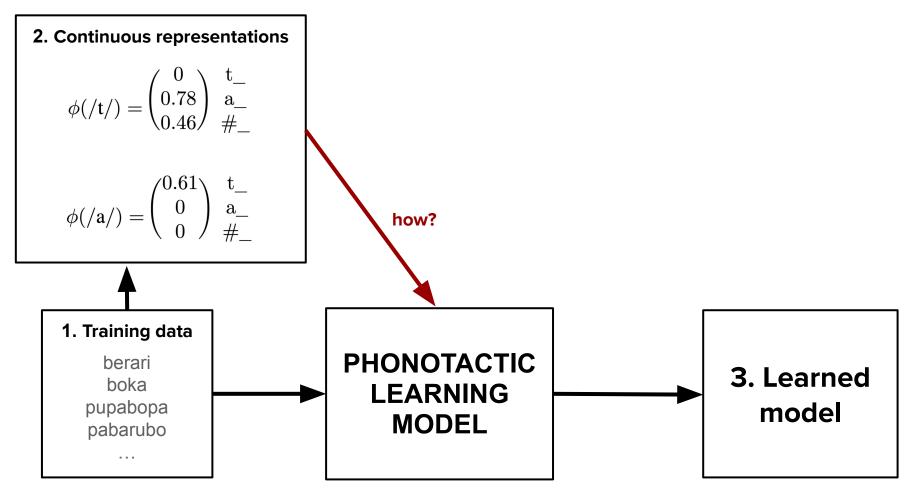
Challenge from discretization

- Too many steps
- Some information from continuous representations is discarded

Phonotactic learning with derived discrete features



Another possibility



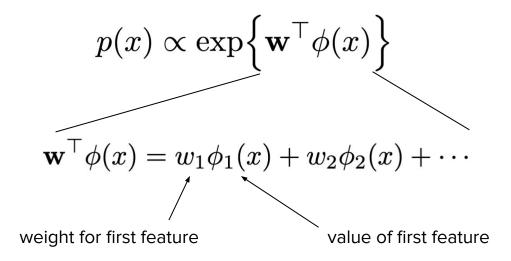
ROADMAP

- 1. Phonotactic learning and features
- 2. A log-bilinear model of phonotactic learning (20 slides left!)
- 3. Model/feature comparison
- 4. Conclusions and future directions

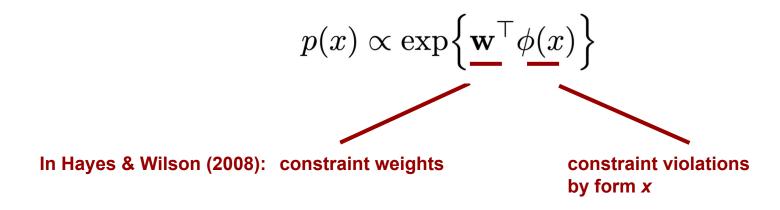
In a **log-linear** (Maximum Entropy) model, the probability of an outcome *x* is

$$p(x) \propto \exp\left\{\mathbf{w}^{\top}\phi(x)\right\}$$

In a **log-linear** (Maximum Entropy) model, the probability of an outcome *x* is



In a log-linear (Maximum Entropy) model, the probability of a outcome x is



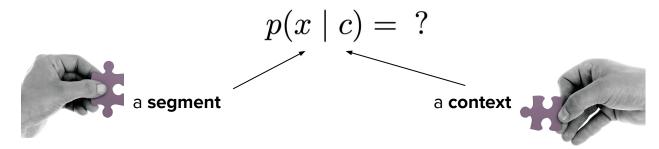
 ϕ : learned or engineered

w: learned from data

In a log-linear (Maximum Entropy) model, the probability of a outcome x is

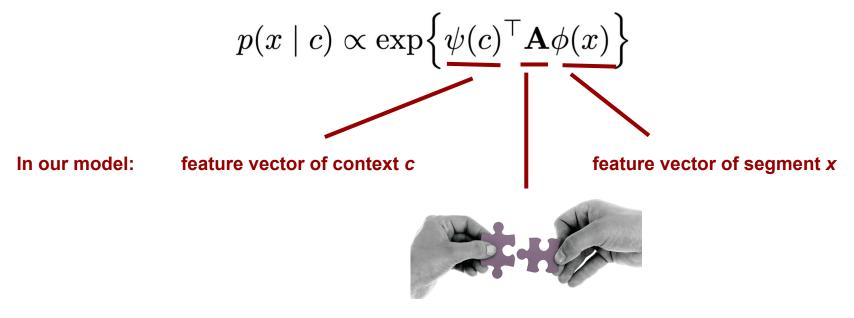
$$p(x) \propto \exp\left\{\mathbf{w}^{\top}\phi(x)\right\}$$

How can we make this *conditional*, so we can calculate the *probability of a segment given context?* e.g. $p(bl) = p(b | \#) \cdot p(l | \#b)$



A log-bilinear model: overview

In a log-bilinear model, the probability of a segment x given context c is



A guides how to connect the features of *c* and *x*

A log-bilinear model: interaction matrix A

In a log-bilinear model, the probability of a segment x given context c is

$$p(x \mid c) \propto \exp\left\{\psi(c)^{\top} \mathbf{A}\phi(x)\right\}$$

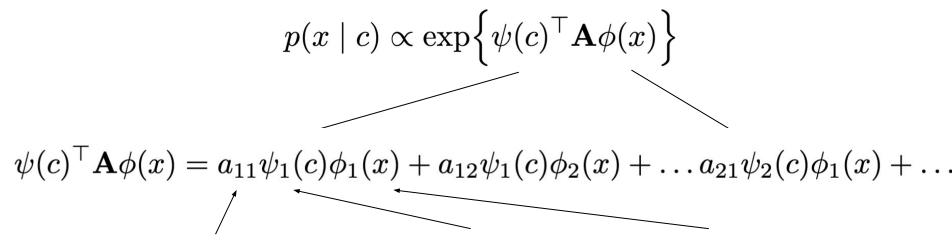
Weight matrix \mathbf{A}_{ii} : how likely a feature $\phi_i(\mathbf{x})$ co-occur with feature $\psi_i(\mathbf{c})$.

$$\begin{array}{cccc} \psi_1(c) & \psi_2(c) & \psi_3(c) \\ \phi_1(x) & \begin{pmatrix} -0.174 & 0.152 & 0.314 \\ 0.118 & -0.011 & 0.236 \\ 0.530 & 0.512 & -0.861 \end{pmatrix}$$

A is learned by gradient descent to maximize likelihood of training data.

A log-bilinear model: interaction matrix A

In a log-bilinear model, the probability of a segment x given context c is



weight for first context feature value of first context feature value of first segment feature and first segment feature

ROADMAP

- 1. Phonotactic learning and features
- 2. A log-bilinear model of phonotactic learning
- 3. Model/feature comparison (15 slides left!)
- 4. Conclusions and future directions

Compatibility

Log-bilinear model is compatible to all types of featural representations;

We test the model using three types of featural representations

- 1. Discrete phonetic features
- 2. Continuous distributional features
- 3. Discretized distributional features

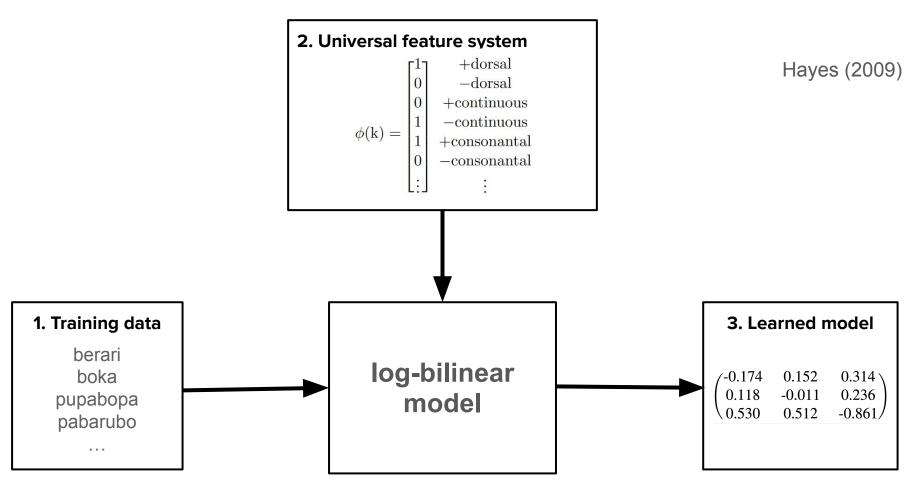
Type 1: Discrete phonetic features

We use the feature specifications from Hayes (2009)

• Segment is either 1 or 0 for each feature-value pair

$$\phi(\mathbf{k}) = \begin{bmatrix} 1 \\ 0 \\ -dorsal \\ -continuous \\ 1 \\ -continuous \\ +consonantal \\ 0 \\ \vdots \end{bmatrix} \begin{bmatrix} 1 \\ -consonantal \\ \vdots \end{bmatrix}$$

Type 1: Discrete phonetic features



Type 2: Continuous distributional features

Dimensions: preceding and following bigram contexts (Mayer 2020)

Values: Calculated in two steps

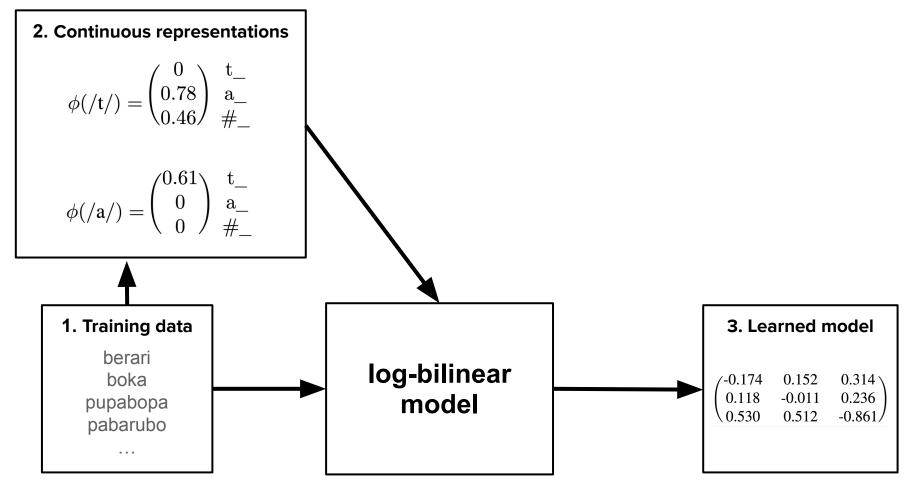
- 1. Compute **bigram probabilities** using a smoothed bigram language model
- 2. Convert probabilities to Pointwise mutual information (PMI):

$$\phi(/t/) = \begin{pmatrix} 0 \\ 0.78 \\ 0.46 \end{pmatrix} \begin{array}{c} t_{-} \\ a_{-} \\ \#_{-} \end{array}$$

$$PMI(x, y) = \log_2 \frac{p(x, y)}{p(x)p(y)}$$

$$\phi(/a/) = \begin{pmatrix} 0.61 \\ 0 \\ 0 \end{pmatrix} \begin{array}{c} t_{-} \\ a_{-} \\ \#_{-} \end{array}$$

Type 2: Continuous distributional features

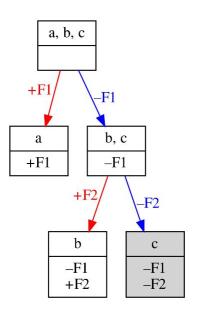


Type 3: discretized distributional features

Starting point: continuous distributional features

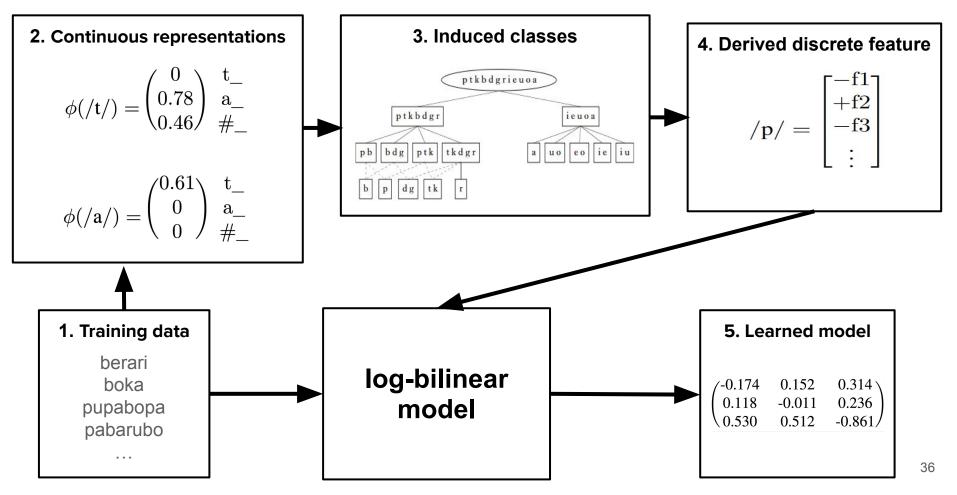
Steps:

- 1. Run clustering algorithm from Mayer (2020) to convert into classes
- 2. Run algorithm from to derive feature system that describes classes (Mayer & Daland 2020)



σ	F1	F2
a	+	0
b	-	+
c	-	-

Type 3: discretized distributional features



Testing the models and featurizations on English onsets

Training data: English onset corpus from Hayes & Wilson (2008)

• 31,641 unlabelled onsets from CMU Pronouncing Dictionary (Weide et al. 1998)

Testing data: Experimental data from Daland et al. (2011)

- Likert ratings given to English nonce words with 48 different onsets by 48 participants
- Broken down into attested, marginal (type frequency < 11), and unattested

Model comparison

We also compare it against three other phonotactic learning models:

- Benchmark: Hayes & Wilson learner (Hayes & Wilson 2008)
- MaxEntGrams (Nelson 2022)
- Smoothed bigram model

Model comparison

We also compare it against three other phonotactic learning models:

• Benchmark: Hayes & Wilson learner (Hayes & Wilson 2008)

MaxEntGrams (Nelson 2022)
Smoothed bigram model
See final paper

for these results

Training procedure

Log-bilinear model

- All three types of features
- Cross-validation done to select optimal hyperparameters

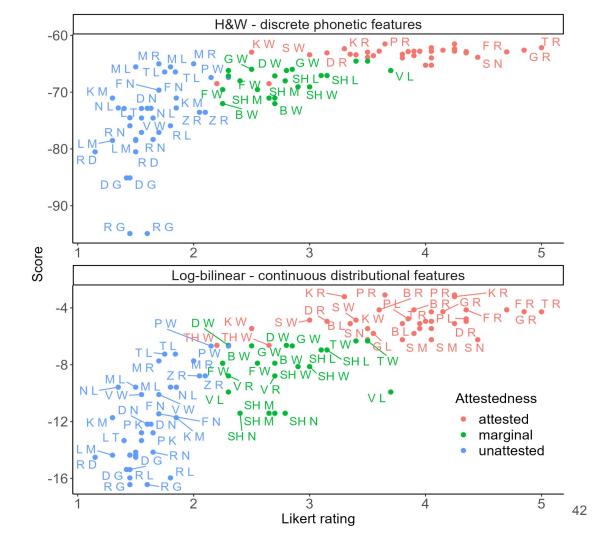
Hayes & Wilson learner (Benchmark)

- Discrete phonetic features and discretized distributional feature
- Maximum of 300 constraints
- Default O/E threshold of 0.3

Result: Kendall's τ correlation

Model	Featurization	Overall	Attested	Marginal	Unattested
H&W	discrete phon.	0.674	0.261	0.301	0.374
	discrete dist.	0.634	0.244	-0.049	0.421
Bilinear	discrete phon.	0.646	0.215	0.247	0.377
	discrete dist.	0.572	0.296	0.067	0.309
	continuous dist.	0.694	0.332	0.201	0.465

Comparing the two best models



Future directions

New data and new patterns

• We found our model inherently predicts distance decay (Zymet 2015)

Fine-grained phonetic features (Mielke 2012)

The definition of 'context' is flexible

- We focus local context
- Could be be extended to different types of contexts

Conclusion

- A log-bilinear model compatible with both continuous and discrete features
- A technique of learning featural representations from the distribution
- Finding: In several cases, models with continuous representations outperformed their counterparts

Thank you!

Q & A

Discussion

The log-bilinear model with continuous features outperforms the same model with discretized features

• We lose relevant information when we discretize them

Model	Featurization	Overall		Atte	Attested		Marginal		Unattested	
Widder	Featurization	r	au	r	au	r	au	r	au	
Smoothed bigram	segments	0.877	0.669	0.509	0.244	0.274	-0.004	0.470	0.280	
MaxEntGrams	discrete dist.	0.753	0.610	0.424	0.282	0.212	0.171	0.583	0.417	
H&W	discrete phon. discrete dist.	0.740 0.818	0.674 0.634	0.533 0.540	0.261 0.244	0.422 -0.012	0.301 -0.049	0.459 0.547	0.374 0.421	
Bilinear	discrete phon. discrete dist. continuous dist.	0.785 0.757 0.699	0.646 0.572 0.694	0.446 0.520 0.611	0.215 0.296 0.332	0.367 0.021 0.247	0.247 0.067 0.201	0.525 0.523 0.562	0.377 0.309 0.465	

Table 5: Model comparison using Pearson's r and Kendall's τ to correlate model scores with acceptability ratings for English onsets. The correlation value for the top performing model in each category is bolded.

Results

Model	Featurization	Overall Attested		Marginal		Unattested			
WIUUCI	reaturization	r	au	r	au	r	au	r	au
H&W	discrete phon.	0.740	0.674	0.533	0.261	0.422	0.301	0.459	0.374
	discrete dist.	0.818	0.634	0.540	0.244	-0.012	-0.049	0.547	0.421
Bilinear	discrete phon.	0.785	0.646	0.446	0.215	0.367	0.247	0.525	0.377
	discrete dist.	0.757	0.572	0.520	0.296	0.021	0.067	0.523	0.309
	continuous dist.	0.699	0.694	0.611	0.332	0.247	0.201	0.562	0.465

$$r =$$
 Pearson's rho $\tau =$ Kendall's tau

What are "features"?

Usually: A **discrete** representational system we used to rationalize the internal structure of basic linguistic representation, such as phonemes.

Some of them have phonetic underpinnings. However, the space of phonetic representations itself is a continuum. e.g. i—e.

Most previous phonotactic models require a prespecified feature file with segments corresponding values in discrete features.

What are "features"?

But also:

We can learn **continuous** representations from distributions: they function just as well as discrete representation, see Mayer (2020).

Proposals for continuous phonetic features (Mielke, 2012)

=> How would a phonotactics model work that operates natively over continuous features, without discretizing?

Two types of research in computational phonology

- 1. Mathematical underpinning of phonological patterns
- 2. Modeling human performance

We are the second type

Put discrete featural representation in a matrix

	sonorant	voice	labial
р	-	-	+
b	-	+	+
m	+	+	+

Put discrete featural representation in a matrix

	sonorant	voice	labial
р	0	0	1
b	0	1	1
m	1	1	1

Open question: continuous phonetic feature?

	sonorant	voice	labial
р	0	0	1
b	0	1	1
m	1	1	1

Put discrete featural representation in a matrix

	#_I	#_r	#_n
р	1	1	0
b	1	1	0
m	0	0	0

PMI

	#_I	#_r	#_n
р	2.464	1.934	0
b	2.464	1.934	0
m	0	0	0