Study by cognitive scientist Emily Grossman to shed light on how visual cues and motor activities formulate perception
Study by cognitive scientist Emily Grossman to shed light on how visual cues and motor activities formulate perception
- December 1, 2008
- Findings will aid in development of new treatments for victims of stroke and individuals with autism and schizophrenia
A bystander witnesses a crime and must recount to police the details of what took
place. A catcher studies the cues of a runner on first in order to judge whether or
not he'll attempt to steal second. A shopper avoids collisions in a crowded mall by
paying attention to others' movements.
Whether the end result is catching a criminal or avoiding a head-on collision with
hurried holiday shoppers, the ability to accurately pair together shapes, colors and
motion is essential in creating our awareness of the world around us.
With a newly awarded $511,000 grant from the National Science Foundation, Emily Grossman,
cognitive sciences assistant professor, will study how the human brain processes these
complex patterns to formulate our perception and in which area of the brain it all
takes place.
Using point light display tests - computerized moving dots that simulate a person's
moving joints - she will test participants' abilities to accurately identify a number
of characteristics such as the action the dots are representing, the gender of the
person the dots are simulating, and whether the dots appear to be resembling a person
at all.
At the same time, she will utilize functional MRI to monitor increases and decreases
of activity levels in the superior temporal sulcus (STS) region of the brain where
the neural processes for recognizing shapes, colors and motor activities are believed
to come together.
Participant responses, coupled with any changes in brain activity levels, will help
isolate which cues are most important for recognizing motion and where this process
comes together in the brain.
Findings from the study will help researchers understand important behavioral and
neurological functions associated with the motion perception process in humans. Further
knowledge in this area, says Grossman, will contribute to a better understanding of
the underlying causes of abnormalities - information which could be useful in developing
future treatments for those with damage or abnormalities, such as the case in victims
of stroke and individuals with autism and schizophrenia, respectively.
In the process, she may also shed light on potential inadequacies of current testing
methods.
"Using simple motion pattern testing hasn't been proven to be effective for understanding
the brain systems involved in natural vision in humans," says Grossman. By monitoring
brain activity during biological motion processing, she hopes to provide evidence
for or against their use in understanding brain functions in humans.
The study, which began in September, will run through August 2012.
Share on:
connect with us