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Characterizing perceptual performance at multiple
discrimination precisions in external noise
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Existing observer models developed for studies with the external noise paradigm are strictly applicable only to
target detection or identification/discrimination of orthogonal target(s). We elaborated the perceptual template
model (PTM) to account for contrast thresholds in identifying nonorthogonal targets. Full contrast psychomet-
ric functions were measured in an orientation identification task with four orientation differences across a
wide range of external noise levels. We showed that observer performance can be modeled by the elaborated
PTM with two templates that correspond to the two stimulus categories. Sampling efficiencies of the human
observers were also estimated. The elaborated PTM provides a theoretical framework for characterizing joint
feature and contrast sensitivity of human observers. © 2009 Optical Society of America

OCIS codes: 330.0330, 330.4060.
f
f

A
E
M
a
f
b
T
t
m
t
p
i
f
m
d
t
c
t
a
s

p
t
m
p
f
s
i
r

. INTRODUCTION
uman performance in detection, discrimination, or iden-

ification tasks depends on many factors, including stimu-
us factors such as signal contrast, magnitude, distribu-
ion of external noise, and discrimination precision; task
actors such as workload, decision structure, and the state
f the observer (e.g., attention, fatigue, cognitive factors).
owever, these factors have mostly been studied in isola-

ion (but see [1]). Perceptual sensitivity, with and without
anipulations of task factors, is typically measured in

wo different ways: (1) as contrast threshold at a particu-
ar level of stimulus difference or (2) as feature threshold
t a constant (usually high) contrast. Using contrast
hreshold as the dependent measure, contrast sensitivity
tudies are usually based on detection of a single stimulus
r discrimination of a pair of stimuli with a large and
xed feature difference [e.g., discrimination of two Gabors
f �45°; Fig. 1(a)]. On the other hand, studies using fea-
ure threshold as the dependent variable usually keep
timulus contrast at a relatively high level and often in-
olve small feature differences [e.g., discrimination of two
00%-contrast Gabors of ��; Fig. 1(b)]. Examples include
he hyperacuity and vernier acuity studies [2–4]. At the
heoretical level, virtually all the existing observer mod-
ls for external noise studies have been developed and
ested in the contrast domain, for target detection or iden-
ification of orthogonal (or nearly orthogonal) targets
2–6]. In this study, we developed and tested a new form
f the perceptual template model (the “elaborated PTM,”
r ePTM) to consider identification or discrimination of
onorthogonal targets in high-precision discriminations.
his new development provides a quantitative account of
1084-7529/09/110B43-16/$15.00 © 2
eature-difference manipulations and an integrated model
or both contrast and feature-difference measurements.

. Perceptual Sensitivity, Observer Models, and
xternal Noise Methods
easures of perceptual performance, such as spatial

nd/or temporal contrast sensitivity functions [7–15] or
eature thresholds [16–21] provide the basic building
locks of our understanding of normal and clinical vision.
o explain perceptual performance at a more fundamen-
al level, psychophysicists have constructed observer
odels based on external noise studies that focus on in-

rinsic limitations of the observer. By separating intrinsic
erceptual limitations of the observer from the character-
stics of the input stimuli, an observer model provides a
ramework to generalize results from a particular experi-
ent to predict observer performance in other tasks using

ifferent input stimuli but the same observer characteris-
ics [22]. Indeed, it has been shown that many observer
haracteristics are invariant across different perceptual
asks [22]. This makes the method very useful because it
ttributes a wide range of limitations in perceptual sen-
itivity to a few observer limitations.

Behavioral approaches, including many psychological
aradigms, have been developed to reveal internal limita-
ions of the perceptual processes and constrain observer
odels. One major internal limitation, the variability in

erceptual processing, is illustrated by inconsistent per-
ormance of the observers when they are given the same
timuli multiple times [2,23]. Due to information loss dur-
ng neural transmission, sampling errors from receptors,
andom bursts of neuronal spikes, and/or internal varia-
009 Optical Society of America
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ion of stimulus representation, the variability can be col-
ectively modeled by equivalent internal noises that pro-
uce the degree of inefficiency exhibited by the perceptual
ystem [2,5,24–26]. Many behavioral paradigms have
een developed to “externalize” the variability of the in-
ernal responses by adding external noise to the input
timulus against which to measure the perceptual vari-
bilities. These include various procedures related to
ritical band masking [27], the equivalent-input noise
ethod [2,4,28–30], the double-pass consistency test

2,23], and the classification-image method [31]. We focus
n the equivalent-input-noise method in this article.

. Equivalent Input Noise Method
he equivalent-input-noise method was originally devel-
ped by engineers to measure the intrinsic noise of elec-
ronic amplifiers [32–34] and later adopted by sensory
sychologists to measure the internal noise of the percep-
ual system [4,29,30,35] (see [6] for a recent review). The
asic idea is that the perceptual system functions like a
oisy amplifier, and the internal noise can be estimated
y systematically manipulating the magnitude of the ex-
ernal noise superimposed on signal stimuli and measur-
ng threshold-versus-external-noise contrast (TvC)
unctions—signal stimulus energy required for an ob-
erver to maintain a certain level of performance as a
unction of the contrast of the external noise.

The equivalent-input-noise method has been used to
eveal internal noise in perceptual processes in a wide
ange of both auditory [31,36–42] and visual
4,5,24,26,28–30,35,43–52] tasks. The paradigm has also
een further developed to investigate mechanisms under-

Fig. 1. Examples of a simple Gabor orientation ide
ying the effects of various cognitive, developmental, and
isease states on the perceptual system [5,6,53–55].

. Existing Observer Models
bserver models developed for external noise studies, ei-

her for target detection or for discrimination or identifi-
ation of orthogonal (or nearly orthogonal) targets, in-
lude the linear amplifier model [4], the induced noise
odel [2], the linear amplifier model with decision uncer-

ainty [56], the induced noise and uncertainty model [3],
nd the perceptual template model [5].
In a linear amplifier model (LAM), perceptual thresh-

lds are determined by two factors: internal additive
oise and observer’s sampling efficiency [4,22]. The LAM
odels TvC functions at a single performance level, but

enerally fails to account for TvCs at different perfor-
ance levels [5]. Moreover, estimates of internal additive
oise and sampling efficiency from the LAM depend on
he particular performance criterion level at which con-
rast thresholds are defined and measured. Various fixes
f the LAM have been proposed, including the addition of
ecision uncertainty [56], induced noise [2], both decision
ncertainty and induced noise [3], or nonlinear trans-
ucer and multiplicative noise [5]. Lu and Dosher [6] con-
ucted a systematic and comprehensive review of the ex-
ernal noise paradigms and all the existing observer
odels developed to account for performance in external
oise studies. They concluded that the five-component
TM, with a perceptual template, a nonlinear transducer

unction, internal additive noise, internal multiplicative
oise, and a decision structure, provided the best account

tion task in the (a) contrast and (b) feature domain.
ntifica
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f all the existing data on target detection or discrimina-
ion of orthogonal targets in the visual domain.

There has been a significant parallel development of
bserver models in pattern vision [57–67]. For example,
n pattern masking studies, instead of external noise, pat-
ern masks (e.g., sine waves of the same or different fre-
uencies, orientations, etc.) are used to probe the proper-
ies of the visual system. Observer models developed and
ested in pattern masking studies usually consist of mul-
iple low-level channels and a pooling stage that com-
utes a weighted sum of the outputs of the low-level chan-
els [65–67]. In contrast, observer models developed in
xternal noise studies use a simplified notion, the percep-
ual template, to represent the overall sensitivity of the
erceptual system, corresponding to the weighted contri-
utions of low-level channels in multichannel models,
ithout referring explicitly to the low-level visual chan-
els. The benefits of this formulation are that (1) it relies
n very few assumptions about the low-level visual chan-
els, and (2) it uses fewer model parameters to describe a

arge range of data in external noise studies. The down-
ide is that the formulation makes it difficult to model in-
eractions of low-level visual channels. On the other
and, although they focus on the different properties of
he visual system (nonlinearity versus internal noise, in-
eractions of low-level channels versus a global template),
he functional forms of some of the observer models in ex-
ernal noise studies and pattern masking studies are very
imilar (see [6]). In this article, we describe our attempt to
laborate an observer model developed for external noise
tudies.

. Ideal Observer Analysis
n this study, data were collected in a Gabor orientation
dentification task over a wide range of conditions (4 [ori-
ntation differences] � 6[external noise levels] � 5[signal
ontrasts]) for three observers. This large parametric data
et gave us an opportunity to use ideal observer analysis
o estimate human sampling efficiencies over a wide
ange of experimental conditions. This was done in three
ifferent ways. First, we simulated an ideal observer in
ll the experimental conditions and estimated sampling
fficiencies based on the simulations. These estimated
ampling efficiencies depended on the performance level
t which contrast threshold was defined because the
imulated ideal observer is a linear model that cannot ad-
quately capture the nonlinear properties of the human
erceptual processes. To illustrate this point, we per-
ormed another ideal observer analysis based on the lin-
ar amplifier model, which is essentially an ideal observer
odel [28]. In the LAM, human inefficiencies are attrib-

ted to internal additive noise and sampling efficiency
elative to the ideal observer. Although traditional ideal
bserver analysis focuses only on experimental conditions
n which external noise is so high that effects of internal
oise are ignored, the LAM-based analysis includes a
ide range of external noise conditions. The method ex-
licitly considers and discounts effects of internal noise on
uman performance in estimating sampling efficiency.
he LAM-based ideal observer analysis is consistent
ith the simulation-based analysis because, like the

imulation-based ideal observer analysis, the LAM-based
deal observer analysis results in performance-level-
ependent sampling efficiency estimates. Finally, we ex-
lored the relationship between the ePTM and ideal ob-
erver analysis. By treating sampling efficiency as a
odel parameter in the more complex ePTM, we obtained

erformance and task-independent estimates of sampling
fficiency for each observer.

. Overview
he goal of this study is to elaborate the PTM to incorpo-
ate tasks involving identification or discrimination of
onorthogonal targets. We first describe an experiment
hat jointly manipulated the magnitude of external noise
nd the degree of target feature difference. We then
resent the elaborated PTM (ePTM) that explicitly con-
iders target feature difference and document its ability
o account for the experimental data.

. EXPERIMENT: TvC FUNCTIONS IN A
ANGE OF FEATURE DIFFERENCES
sing the method of constant stimuli, we measured full

ontrast psychometric functions of three observers in an
rientation identification task in varying amounts of ex-
ernal noise at fovea. Four orientation differences (�3°,
6°, �15°, and �45° from vertical) were examined, sepa-

ated in miniblocks in each session across six levels of ex-
ernal noise. Three TvC functions, at criterion perfor-
ance levels of 65, 75, and 85% correct, were estimated in

ach orientation difference condition.

. Method

. Participants
wo naïve observers (CB, JS) and the first author (SJ)
articipated in the experiment. All observers had
orrected-to-normal vision and were experienced in psy-
hophysical studies.

. Apparatus
he experiment was conducted on a Macintosh Power G4
omputer, running MATLAB with Psychtoolbox exten-
ions [69]. All displays were shown on a 17-in. Apple Stu-
io Display monitor with a refresh rate of 120 frames/s.
he screen resolution was set to 640 � 480. A special cir-
uit was used to produce a monochromatic signal of high
rayscale resolution (�12.5 bits) [70]. Gray levels were
inearized using a psychophysical procedure [71]. The
vailable display contrast ranged from �1.0 to 1.0. All
isplays were viewed binocularly with natural pupils at a
istance of approximately 72 cm. A chinrest was used for
bservers to maintain head position throughout the ex-
eriment.

. Stimuli
he signal stimuli were Gaussian-windowed sinusoidal
ratings, oriented �3°, �6°, �15°, and �45° from verti-
al. The luminance profile of the Gabor stimuli is de-
cribed by
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L�x,y� = L0�1.0 + c sin �2�f�x cos � + y sin ����e�−�x2+y2�/2�2�,

�1�

here c is the contrast of the Gabor, L0 is the background
uminance, set in the middle of the dynamic range of the
isplay (Lmin=1 cd/m2; Lmax=55 cd/m2), f=1.92 c/d is the
enter spatial frequency of the Gabor, and s=0.52 deg is
he standard deviation of the Gaussian window. The Ga-
ors were rendered on a 64 � 64 pixel grid, extending
.78° � 2.78° of visual angle.
External noise images were constructed using 2 � 2

ixel elements (0.087° � 0.087°). In every trial, the con-
rasts of all the noise elements were drawn randomly and
ndependently from the same Gaussian distribution with

ean 0 and one of six standard deviations: 0, 0.05, 0.07,
.12, 0.20, and 0.33. Because the display contrast ranges
rom �1.0 to 1.0, a sample with standard deviation of 0.33
onforms reasonably well to a Gaussian distribution. Both
ignal and noise images were centered at fixation.

. Design
he method of constant stimuli was used to measure TvC

unctions in four Gabor orientation difference conditions
�3°, �6°, �15°, and �45° from vertical). In each exter-
al noise condition, the psychometric function for the two-
lternative forced-choice identification task was sampled
t five signal stimulus contrasts, determined from pilot
ests to span the full range of performance levels. There
ere therefore a total of 4 [orientation differences] � 6

external noise levels] � 5 [signal contrasts] conditions.
To reduce decision uncertainty, the four orientation dif-

erence conditions were run in separate miniblocks of 30
rials each. Within each block, there was one trial from
ach of the 30 [external noise � signal contrast] condi-
ions. Each experimental session consisted of 40

Fig. 2. Full psychometric functions in all the experimental co
iniblocks, 10 for each orientation difference condition.
he order of trials in each miniblock and the order of
iniblocks were both randomized in each session. All ob-

ervers ran 10 sessions of 1200 trials, for a total of 12,000
rials or 100 trials per experimental condition.

. Procedure
n the beginning of each miniblock and each trial, observ-
rs were reminded of the orientation difference condition
y a text string (e.g., “3 deg”) in the center of the display.
ach trial began after the observer read the string and
ressed the space bar on the computer keyboard. This
as followed by a display sequence, consisting of a 500 ms
xation cross, a 8.3 ms external noise image, a 8.3 ms sig-
al image, another 8.3 ms independent external noise im-
ge, and a blank screen until the end of response, all pre-
ented in the center of the monitor. Observers identified
he orientation of the Gabor stimulus, using keys “s,” “d,”
r “f” for counterclockwise orientations and “j,” “k,” or “l”
or clockwise orientations. The six keys were used to re-
uce finger errors; observers generally used “f” and “j.” A
ystem beep followed each incorrect response.

. Results

. Psychometric Functions
total of 24 psychometric functions were obtained from

ach observer, one for each orientation difference and ex-
ernal noise condition (Fig. 2), sampled at five predefined
ignal contrast levels selected for each external noise con-
ition. Observers exhibited very small overall bias in
heir choice of the Left/Right responses: 47.5% vs. 52.5%,
1.2% vs. 48.4%, and 50.8% vs. 49.2% for CB, JS, and SJ,
espectively.

The psychometric functions were first fitted with the
eibull:

s. Smooth curves represent the best fitting Weibull functions.
ndition
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P�c� = � + �1 − � − 	��1 − e−�c/
��
�, �2�

here c is the signal contrast, 
 is the threshold, � is the
lope of the psychometric function, � � 0.5 represents the
hance performance level, and 	 represents observer’s
apse rate. A maximum-likelihood procedure was used
72]. The likelihood is defined as a function of the total
umber of trials Ni, the number of correct trials Ki, and
he percent correct predicted by Eq. (2) in each experi-
ental condition i:

likelihood = �
Ni!

Ki!�Ni − Ki�!
Pi

Ki�1 − Pi�Ni−Ki, �3�

here � runs across all the experimental conditions for
n observer.
Nested-model tests based on 
2 statistics were used to

ompare constrained (reduced model) and unconstrained
full model) fits to the psychometric functions:


2�df� = 2 log� max likelihoodfull

max likelihoodreduced
� , �4�

here df=kfull−kreduced.
The following constraints were used in fitting the psy-

hometric functions: (1) Each observer has a single lapse
ate (	) across all the orientation difference and external
oise conditions. (2) In each orientation difference condi-
ion, the psychometric functions in all the external noise
onditions have the same slope (�). The Weibull ac-
ounted for 80.1%, 87.7%, and 90.2% of the variance for
bservers CB, JS [73], and SJ, respectively. The con-
trained psychometric function fits were statistically
quivalent to the unconstrained models in which an inde-
endent slope value was assumed for each external noise
evel in each orientation difference condition [
2�20�
0.3416 and 0.3336 for CB and SJ respectively, and
2�16�=0.3484 for JS. p�0.90 for all observers].
The best-fitting Weibull functions are shown as smooth

urves in Fig. 2. The parameters of the best-fitting model
re listed in Table 1. The lapse rate was very low ( �1.4%)
cross the board. The two most prominent features of the
amily of psychometric functions are as follows: (1) In
ach orientation difference condition, the psychometric

Table 1. Parameters of the

� h 
0 
1

B � 3° 0.585 0.226 0.216 0
� 6° 0.511 0.164 0.164 0
� 15° 0.372 0.131 0.111 0
� 45° 0.473 0.101 0.091 0

JS � 3° 0.697 0.209 0.228 0
� 6° 0.363 0.150 0.131 0
� 15° 0.359 0.120 0.108 0
� 45° 0.293 0.109 0.094 0

SJ � 3° 0.395 0.181 0.178 0
� 6° 0.405 0.132 0.128 0
� 15° 0.338 0.098 0.095 0
� 45° 0.451 0.072 0.072 0
unctions shifted to the right as the external noise in-
reased, and (2) the slope of the psychometric functions
ncreased as the orientation difference increased from
3° to �45°.

. TvC Functions
ontrast thresholds at performance levels of 65%, 75%,
nd 85% correct, corresponding to d� of 0.5449, 0.9539,
nd 1.4657, were computed from the best-fitting Weibull
unctions. The thresholds are plotted as TvC functions in
ach orientation difference condition in Fig. 3. The stan-
ard deviation of each threshold was calculated using a
e-sampling method [5,74].

The external noise contrast manipulation was highly
ffective. Averaged across discrimination precision condi-
ions and performance levels, thresholds increased 236%,
77%, and 340% from the zero external noise condition to
he highest external noise condition for CB, JS, and SJ,
espectively (note: the highest external noise condition for
S is lower than that for CB and SJ). Decreasing orienta-
ion difference (and thus increasing the discrimination
recision) had two effects on the TvC functions. It in-
reased thresholds in all the external noise conditions. Av-
raged across external noise conditions and observers,
hresholds increased 32%, 69%, and 156% from the lowest
iscrimination precision condition (�45°) to the highest
iscrimination precision condition (�3°). It also increased
he threshold ratio between different performance levels
or each external noise condition. Averaged across exter-
al noise levels and observers, the threshold ratio be-
ween 85% correct and 75% correct performance levels in-
reased from 1.2 to 1.4; the threshold ratio between 75%
orrect and 65% correct performance levels increased
rom 1.3 to 1.5. In the following section, we develop an
PTM to account for all these effects.

. MODELING
. The ePTM
bserver models developed for discrimination or identifi-

ation in external noise assume the existence of a tem-
late tuned to each to-be-identified stimulus. The original
TM as well as all the other observer models in external

-Fitting Weibull Functions


3 
4 
5 	 r2

0.368 0.548 0.815 0.011 0.8006
0.241 0.346 0.576
0.169 0.251 0.407
0.122 0.209 0.298

0.427 0.752 — 0.029 0.8766
0.261 0.376 —
0.176 0.309 —
0.122 0.201 —

0.338 0.482 0.819 0.001 0.9017
0.206 0.307 0.509
0.170 0.287 0.449
0.127 0.189 0.350
Best


2

.266

.145

.116

.098

.294

.155

.112

.109

.229

.153

.113

.081
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oise studies were constructed for cases where any single
timulus plausibly activates only one perceptual template
e.g., Gabors of orientation �45°). Here, we extended the
riginal PTM [5] to include variation in the feature di-
ension in addition to external noise and signal contrast.
We elaborated the PTM based on the results of an ex-

ensive analysis of all the major existing observer models
eveloped in external noise studies [6], including the lin-
ar amplifier model [4], the induced noise model [2], and
he induced-noise-plus-uncertainty model [3]. The PTM
ccommodates all the known “standard” properties of
ata in external noise experiments. It also provides the
est qualitative and quantitative account of a full range of
epresentative data sets.

In the PTM, perceptual inefficiencies are attributed to
hree limitations: internal additive noise that is associ-
ted with absolute thresholds in perceptual tasks, inter-
al multiplicative noise that is associated with Weber’s

aw behavior of the perceptual system, and perceptual
emplates tuned to the target stimuli but that may be
road enough to allow external noise or distracters to af-
ect performance. In the original PTM [Fig. 4(a)], the ob-
erver is characterized by four parameters: gain to the
ignal stimulus (�), exponent of the nonlinear transducer
unction (�), internal additive noise �Na�, and coefficient of
he multiplicative internal noise �Nm�. To model two-
lternative forced-choice identification or discrimination
f nonorthogonal targets, in the [ePTM, Fig. 4(b)], we in-
roduce two perceptual templates, one for each of the two
timulus categories. The two templates are assumed to be
dentical except in the feature dimension under study. In

given trial of a two-alternative forced-choice identifica-
ion task, a single stimulus is presented and must be
dentified. The stimulus is better matched to one template

ig. 3. TvC funcitons at 65%, 75%, and 85% performance levels
he best-fitting ePTM. Error bars denote one standard deviation.
B�x ,y , t� (with gain �B) and less well matched to the
ther template TW�x ,y , t� (with gain �W less than �B). For
xample, if two orientations are to be discriminated, two
emplates are used and a given target stimulus matches
ne of the templates relatively closely, and—if the two ori-
ntations are sufficiently similar—that target stimulus
lso matches the other template to some degree because
he two templates are also relatively similar. We next de-
cribe the components of the ePTM.

. Input Stimulus
he model considers input stimuli that include a signal
timulus (i.e., a Gabor of a certain orientation) embedded
n white Gaussian external noise. For a signal stimulus
ith contrast c superimposed with white Gaussian noise

mages—images made of pixels whose contrasts are
amples of jointly independent, identically distributed
aussian random variables with mean zero and standard
eviation Next—the input stimulus can be expressed as

S�x,y,t� = cS0�x,y,t� + Nextg�x,y,t�, �5�

here S0�x ,y , t� represents the spatiotemporal pattern of
he signal stimulus and g�x ,y , t� represents the various
ontrasts of an external noise image whose value at a par-
icular point �x ,y , t� is drawn from a Gaussian distribu-
ion with mean 0 and standard deviation 1.0.

. Template Matching
he input stimulus S�x ,y , t� is matched to both templates,

�x ,y , t� and T �x ,y , t�:

four orientation difference conditions. Smooth curves represent
in the
B W
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YB1 =��� TB�x,y,t�S�x,y,t�dxdydt

= c��� TB�x,y,t�S0�x,y,t�dxdydt

+ Next��� TB�x,y,t�g�x,y,t�dxdydt, �6a�

YW1 =��� TW�x,y,t�S�x,y,t�dxdydt

= c��� TW�x,y,t�S0�x,y,t�dxdydt

+ Next��� TW�x,y,t�g�x,y,t�dxdydt. �6b�

For a given pair of templates and signal stimuli, the
alues MB=	TB�x ,y , t�S0�x ,y , t�dxdydt and MW
	TW�x ,y , t�S0�x ,y , t�dxdydt are constant;
TB�x ,y , t�g�x ,y , t�dxdydt and 	TW�x ,y , t�g�x ,y , t�dxdydt
re Gaussian random variables with mean 0 and a fixed
tandard deviation �TN. The outputs from template
atching can be rewritten as

Y = M c + N � g̃ �0,1�, �7a�

ig. 4. Schematic representations of the original PTM and the
timulus in a given trial (with gain �B) and the less-well-matched
f two nonorthogonal targets.
B1 B ext TN 1
YW1 = MWc + Next�TNg̃2�0,1�, �7b�

here g̃1�0,1� and g̃2�0,1� are two samples from the stan-
ard normal distribution. The two samples may be par-
ially correlated if TB�x ,y , t� and TW�x ,y , t� overlap each
ther.

. Nonlinear Transducer
he outputs of the two perceptual templates are then pro-
essed by an expansive nonlinear transducer function
Output=sign�Input�
Input
�1�, chosen based on similar
hoices in pattern vision [75,76]. If a stochastic model
ere fully implemented, nonlinearities (other than 1.0)
ould require the inclusion of cross products and consid-
ration of the stochastic properties prior to the nonlinear-
ty. This formulation is complex, and in general stochastic

odels based on Monte Carlo simulations are necessary
o model the nonlinear transducer.

In developing the PTM, and in order to simplify the
ask of model estimation and fitting, we introduced ana-
ytical simplifications of the stochastic model by using the
xpectations of the random variables in place of the ran-
om variables and ignoring all the cross products. The ap-
roach of using analytic simplifications of the full stochas-
ic model in the (analytic) PTM has been validated in
arious ways. First, we (Dosher and Lu [54]) have carried
ut simulations of the stochastic PTM to show that key
roperties of the analytic PTM and mechanisms of state
hange in the analytic PTM are asymptotically consistent

. In the ePTM, two detectors, one better matched to the signal
signal stimulus (with gain �W), are used to model identification
ePTM
to the
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ith the stochastic model [77]. Second, the distributional
ssumptions of the signal detection applications were
hown to be approximately true of the stochastic PTM.
hird, the analytic PTM has proven quite robust in ac-
ounting for a wide range of data from now dozens of
tudies that have evaluated not just single conditions but
ull TvC functions at multiple (usually two or three) cri-
erion threshold levels (proxies for the full psychometric
unctions) [48,54] (see [6] for a review).

We follow the same development in the PTM and ap-
roximate the outputs of the two detectors after the non-
inear transducer as [78]:

YB2 = �MBc��1 + Next
�1 �TN

�1 F�1��1�g̃1�0,1�, �8a�

YW2 = �MWc��1 + Next
�1 �TN

�1 F�1��1�g̃2�0,1�, �8b�

here g̃1�0,1� and g̃2�0,1� are two samples from the stan-
ard normal distribution. Generally absorbed in later nor-
alization, F��1� is a constant that corrects for the effect

f nonlinearity on the standard deviation [79].
Because in behavioral studies, the values of MB, MW,

nd Next�TNF��1� can be known only to a constant, with-
ut losing any generality we normalized everything rela-
ive to �TNF��1�. This essentially sets �TNF��1�=1, that is,
he total gain of the perceptual templates (integrated over
pace and time) to 1.0. We define

�B =
MB

�TNF��1�
=
��� TB�x,y,t�S0�x,y,t�dxdydt

�TNF��1�
,

�9a�

�W =
MW

�TNF��1�
=
��� TW�x,y,t�S0�x,y,t�dxdydt

�TNF��1�
,

�9b�

nd rewrite Eqs. (8a) and (8b) as

YB2 = ��Bc��1 + Next
�1 g̃1�0,1�, �8c�

YW2 = ��Wc��2 + Next
�2 g̃2�0,1�. �8d�

n this formulation, the definition of �B and �W depends
n F��1�, which is a function of �1. In situations in which
single �1 is involved, F��1� is just a correction factor on

he absolute value of �B and �W. In those few situations in
hich multiple �1’s are involved, F��1� for the different

1’s must be explicitly considered in the modeling process.
ost situations in which the PTM has been evaluated in-

olved a single �1 [53–55,80,81].
For two templates with gains �B and �W, the variations

n YB2 and YW2 are partially correlated. When the two
emplates cease being well approximated as orthogonal
nd have more overlap, i.e., when �W is significantly
reater than 0, the response to external noise will become
ore similar as well. We have simulated a stochastic ver-

ion of the ePTM and examined the covariance between
he outputs of the two templates after the nonlinear
ransducer. We found that over a large range of signal
ontrast levels (0 to 100%), template overlaps (�1 to �45
eg), and �1’s (1.0 to 3.0), the effective variance of �YB2

YW2� can be corrected by a factor �1−�w /�B: the correc-
ion factor accounted for 95.3% of the variance in the
imulation study. Therefore, if the perceptual system can
tilize the partial correlation of the templates’ response to
he external noise in decision making, then the effective
ariance of the external noise should be corrected by a
actor of �1−�w /�B.

. Additive and Multiplicative Noise
he model posits that each detector has independent in-

ernal additive and multiplicative noise. In both detec-
ors, the additive noise has mean 0 and standard devia-
ion Na. The variance of the multiplicative noise is a
unction of the total contrast energy going through each
etector. In computing multiplicative noise, the outputs of
he two templates are rectified and passed through an-
ther nonlinear transducer function �Output= 
Input
�2�;
timulus energy over a broad range of space, time, and
eatures may be integrated in computing multiplicative
oise. The variance of multiplicative noise is proportional
o the total stimulus energy in each detector:

�mB
2 = Nm

2 �Next
2�2 + ��Bc�2�2�. �10a�

�mW
2 = Nm

2 �Next
2�2 + ��Wc�2�2�. �10b�

After adding the internal additive and multiplicative
oises, the outputs of the two detectors are

YB3 = ��Bc��1 + Next
�1 g̃1�0,1� + Nag̃3�0,1� + �mBg̃5�0,1�,

�11a�

YW3 = ��Wc��1 + Next
�1 g̃2�0,1� + Nag̃4�0,1� + �mWg̃6�0,1�,

�11b�

here g̃3�0,1�, g̃4�0,1�, g̃5�0,1� and g̃6�0,1� are indepen-
ent samples from the standard normal distribution.

. Decision
e assume that a difference rule is used at the decision

tage. The outputs of the two detectors, YB3 and YW3 are
ompared:

D = YB3 − YW3 = ���Bc��1 − ��Wc��1� + Next
�1 �g̃1�0,1� − g̃2�0,1��

+ Na�g̃3�0,1� − g̃4�0,1�� + ��mBg̃5�0,1� − �mWg̃6�0,1��.

�12�

n this comparison, the total variance is determined by
he variance of all the random variables:

�total
2 = 2�1 − �W/�BNext

2�1 + Nm
2 �2Next

2�2 + ��Bc�2�2 + ��Wc�2�2�

+ 2Na
2. �13�

he average signal-to-noise ratio �d� � for the comparison
s
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d� =
mean�YB3� − mean�YW3�

��total
2 /2

=
��Bc��1 − ��Wc��1

��1 − �W/�BNext
2�1 + Nm

2 �Next
2�2 +

��Bc�2�2 + ��Wc�2�2

2 
 + Na
2

. �14�
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In the special case where �=�1=�2, corresponding to
he situation where the rising portion of the TvC function
as a slope of 1.0, we can solve Eq. (14) to obtain thresh-
ld signal contrast c
 as a function of external noise con-
rast Next at a given performance criterion (i.e., d�):

c
 = �
���1 − �W/�B + Nm

2 �Next
2� + Na

2�

��B
2� − �W

2��

d�2 −
Nm

2 ��B
2� + �W

2��

2
�

1/2�

. �15�

n all the applications of the PTM approach so far, we
ave found that the PTM with �=�1=�2 has provided ad-
quate descriptions of the empirical data. In the rest of
his article, we will restrict our discussion to this simpli-
ed set of PTMs. The same logic could be followed to un-
erstand the properties of PTMs with �1��2.
It follows directly from Eq. (15) that for any given ex-

ernal noise contrast ∀Next, the threshold signal contrast
atio between two performance criterion levels (corre-
ponding to d2� and d1�), is

c
2

c
1

= �
��M

2� − �U
2��

d1�
2 −

Nm
2 ��M

2� + �U
2��

2

��M
2� − �U

2��

d2�
2 −

Nm
2 ��M

2� + �U
2��

2
�

1/2�

. �16�

hus, the ePTM predicts that threshold signal contrast
atio between two performance criterion levels in any ex-
ernal noise contrast condition is a nonlinear function of
he corresponding d�, independent of the particular exter-
al noise level. These ratios are predicted to be indepen-
ent of the external noise contrast (a testable model prop-
rty) and form one competitive basis for favoring the PTM
ver alternative observer models. A full specification of all
he parameters of an ePTM requires measurement of TvC
unctions at three (or more) separate levels of feature dif-
erences at each of three (or more) performance levels.

. Relationship to LAM and Ideal Observer
nalysis
he ePTM is elaborated from the LAM by incorporating
dditional processing of the stimulus and noise, including
he nonlinear transducer, and multiplicative noise. If we
et � � 1, Nm=0, and �W=0, the ePTM is “reduced” to the
AM, and Eq. (15) becomes

c
 = �d�2

�B
2 �Next

2 + Na
2�
1/2

. �17�

The LAM was developed as a form of an ideal observer
odel. If we square both sides of Eq. (17), we have
c

2 =

d�2

�B
2 �Next

2 + Na
2�. �17b�

ecause �B reflects signal gain of the human observer, we
an reformulate it in terms of the gain �IB of the ideal ob-
erver and sampling efficiency �:

�B = ���IB. �18�

ubstituting Eq. (18) into Eq. (17b), we obtain the
fficiency-based formulation of the LAM [26]:

c

2 =

d�2

��IB
2 �Next

2 + Na
2� =

1

�k
�Next

2 + Na
2�, �17c�

here k=�IB
2 /d�2. If the slope of the TvC function is a,

hen the efficiency is

� =
1

ak
=

d�2

a�IB
2 . �19�

quation (19) allows one to estimate LAM sampling effi-
iency from the slope of the threshold versus external
oise functions. Although traditional ideal observer
nalysis focuses only on experimental conditions in which
xternal noise is so high that the contributions of internal
oise can be ignored, the LAM analysis includes a wide
ange of external noise conditions. The method explicitly
onsiders and discounts effects of internal noise on hu-
an performance in the computation of efficiency.
This reformulation of the LAM also illustrates the re-

ationship of the ePTM to ideal observer analysis and in-
icates in a parallel development how to estimate sam-
ling efficiency through the ePTM. Essentially, we can
eformulate �B in terms of the gain �IB of the ideal ob-
erver and sampling efficiency of the human observer �:

�B = ���IB. �20�

n simple detection tasks, the template of the ideal ob-
erver is matched to the signal stimulus. In identification
r discrimination tasks, the template of the ideal observer
s matched to the signal stimulus—which then yields an
deal computation if the decision rule is ideal [82,83]. We
an apply Eq. (9) to the actual stimuli used in the experi-
ents to compute the gain of the ideal observer.
Although other components of the ePTM, the nonlinear

ransducer, multiplicative noise, and the gain of the less-
ell-matched template also affect human performance,
ur approach here is to model them explicitly in the ePTM
nd discount their contributions in estimating human
ampling efficiency, just as additive noise is explicitly con-
idered and discounted in the LAM-based ideal observer
nalysis.
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. EVALUATING THE ePTM
o evaluate the ePTM using the current parametric data
et, we tested whether a single model with only �W vary-
ng as a function of orientation difference can fit all the
vC functions in all the experimental conditions (with
W=0 in the �45 condition). The model includes seven pa-
ameters: shared Na, Nm, �, and �B across the orientation
ifference conditions, and three �W’s for the �3, �6, and
15 deg conditions of the experiment. Fits of this most re-
uced seven-parameter model to the data were compared
ith three more saturated models, including (1) two mod-
ls with 10 parameters that allowed Na or Nm, in addition
o �W, free to vary in the four orientation difference con-
itions and (2) one model with 13 parameters that al-
owed both Na and Nm free to vary in the four orientation
ifference conditions. In fitting the ePTM, the standard
eviation of external noise was multiplied by �2 to reflect
he use of two independent external noise frames in each
rial.

A least-square procedure with the following cost func-
ion,

Table 2. Parameters of the Best-Fitting ePTM

�B

CB JS SJ

1.062 0.8290 1.075

�W� 3° 0.9486 0.7620 1.023
� 6° 0.8515 0.6921 0.9387
� 15° 0.6966 0.5447 0.8458
� 45° 0 0 0

Nm 0.1047 0.1170 0.0261
Na 0.0098 0.0024 0.0031
� 1.818 2.216 2.050
r2 0.9749 0.9335 0.9890

F�6 ,59� 0.123 0.017 0.019
F�3 ,62� 0.000 0.000 0.000
F�3 ,62� 0.257 0.092 0.042

Fig. 5. Schematic representation of the
RSS = � �log�c

predicted� − log�c


measured��2, �21�

here c

predicted is computed using Eq. (15), and � repre-

ents summation across three performance levels of all
he external noise and orientation difference conditions
or an observer, was used to search for the best fitting pa-
ameters of each model. The goodness of model fits was
auged by

r2 = 1.0 −
� �log�c


predicted� − log�c

measured��2

� �log�c

measured� − mean�log�c


measured���2
,

�22�

here � and mean () run across all the experimental con-
itions for an observer. An F-test for nested models was
sed to statistically compare the models. For two nested
odels with kfull and kreduced parameters, the F statistic is

efined as

F�df1,df2� =
�rfull

2 − rreduced
2 �/df1

�1 − rfull
2 �/df2

, �23�

here df1=kfull−kreduced, and df2=N−kfull; N is the num-
er of predicted data points.
The most reduced model, which only allows �W free to

ary across discrimination precision conditions, ac-
ounted for 97.4%, 93.3%, and 98.9% of the variance for
B, JS, and SJ, respectively. For all three observers, al-

owing Na and/or Nm free to vary across the four orienta-
ion difference conditions did not significantly improve
he fits (all p�0.25). We conclude that the most reduced
odel in which the gain of the less-well-matched tem-

late varies as a function of orientation difference pro-
ides the best account of the TvC functions. The param-
ters of the best-fitting model are listed in Table 2.

In Fig. 5, we plotted the average �W /�B of the best-
tting model of the three observers as a function of the
rientation difference. If we assume that across the four
rientation difference conditions, only the overlap be-
ween the better matched and less-well-matched tem-

tual template based on normalized � .
percep
 W
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lates changes but the shapes of the perceptual template
emains the same and can be modeled as a Gaussian, we
an estimate the bandwidth of the perceptual template by
tting a Gaussian to the data in Fig. 5. The resulting half-
idth bandwidth at half-height is 39.5°.
The ePTM without the correction factor of the covari-

nce of the outputs of the two perceptual templates in
ach orientation difference condition was also evaluated.
lthough estimates of the model parameters are slightly
ifferent, the general qualitative results did not change.

. IDEAL OBSERVER ANALYSIS
. Simulation-Based Analysis
he performance of an ideal observer was simulated us-

ng the stimuli and tasks in the experiment, with the as-
umption that the ideal observer has an integration win-
ow that is at least 25 ms, which is the duration of the
timulus in each trial of the experiment. The TvC func-
ions at three performance levels (65%, 75%, and 85% cor-
ect) for the ideal observer are plotted in Fig. 6 as squared
ontrast threshold cideal

2 versus the variance of the exter-
al noise functions. A linear function,

cIdeal
2 �Pc
task� = �Ideal�Pc
task�Next

2 . �24�

rovided an excellent account of these TvC functions �r2

0.9999�. The slopes of the TvC functions ��Pc 
 task� for
he four orientation difference conditions at 65%, 75%,
nd 85% correct performance levels are listed in Table 3.
We also replotted the TvC functions of the human ob-

ervers in terms of squared contrast thresholds versus ex-
ernal noise variance in Fig. 6. Again, the variance of the
xternal noise was corrected by a factor of 2 to reflect the
se of two independent external noise frames in each

ig. 6. TvC functions at 65%, 75%, and 85% performance levels i
hresholds versus variance of external noise for the three human
epresent the results of the linear regression analysis.
rial. A linear regression analysis was used to extract the
lopes and intercepts of the human TvC functions

cHuman
2 �Pc
task,obs� = �Human�Pc
task,obs�Next

2 + b.

�25�

he linear equation [Eq. (25)] provided excellent account
f the human data, accounting for 99.8%, 99.3%, and
9.8% variance for CB, JS, and SJ, respectively. The
lopes and intercepts are listed in Table 3.

We then calculated the sampling efficiencies of the hu-
an observers using the following definition [28]:

��Pc
task,obs� =
�Ideal�Pc
task�

�Human�Pc
task,obs�
. �26�

he results are listed in Table 4.
For the three observers in this study, sampling efficien-

ies ranged from 0.018 to 0.098. In a given orientation dif-
erence condition, the estimated sampling efficiency in-
reased with performance level. For example, for observer
B, sampling efficiency � 0.035, 0.050, and 0.066 at 65%,
5%, and 85% correct performance levels, respectively, in
he �45 deg condition. The dependence of the estimated
ampling efficiency on the performance level reflects a
ajor shortcoming of the conventional ideal observer

nalysis, which uses a linear model to estimate properties
f the often nonlinear perceptual processes. We further
iscuss this point in the next section.

. LAM-Based Analysis
he LAM predicts a linear relationship between squared
ontrast threshold and the variance of external noise. For
onoverlapping stimulus categories (�45 deg), ideal ob-
erver analysis based on the efficiency-based formulation

our orientation difference conditions, plotted as squared contrast
ers (first three rows) and the ideal observer (last row). The lines
n the f
observ
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f the LAM [Eq. (17c)] is identical to the simulation-based
deal observer analysis. We calculated �IB [Eq. (9)] by us-
ng two ideal templates that are completely matched to
he �45 deg Gabor stimuli and the exact signal and ex-
ernal noise images used in the study. Because very brief
8.3 ms) external noise and Gabor image frames were
sed, perfect summation was assumed in the calculation.
he result is �IB=8.05. The d� values corresponding to
5%, 75%, and 85% correct performance are 0.5449,
.9539, and 1.4657. The sampling efficiencies were calcu-
ated from the slopes of the TvC functions using Eq. (19).
or CB, sampling efficiency is 0.032, 0.051, and 0.069 at
he 65%, 75%, and 85% correct performance levels, re-
pectively. For JS, sampling efficiency is 0.022, 0.044, and
.072 at the three performance levels. For SJ, sampling
fficiency is 0.022, 0.036, and 0.050 at the three perfor-
ance levels. These values are very similar to those ob-

ained from the simulation-based ideal observer analysis
nd comparable to estimated sampling efficiencies in the
iterature [51,84,85].

Table 3. Slopes and Intercepts of the Squa
Varianc

Observer
Percent Correct

(%)

� 3°

Slope Intercept Sl

CB
�r2=0.9975�

65 0.88 0.015 0
75 1.94 0.032 1
85 3.75 0.062 1

JS
�r2=0.9928�

65 1.74 0.005 0
75 4.48 0.014 1
85 10.14 0.032 1

SJ
�r2=0.9976�

65 1.31 0.009 0
75 2.21 0.016 0
85 3.42 0.024 1

IO
�r2=0.9999�

65 0.053 0 0.
75 0.146 0 0.
85 0.336 0 0.

Table 4. Sampling Efficien

Efficiency Performance � 3°

�i (CB) 65% 0.061
75% 0.076
85% 0.090

�i (JS) 65% 0.031
75% 0.033
85% 0.033

�i (SJ) 65% 0.041
75% 0.066
85% 0.098
Like the estimated sampling efficiencies from the
imulation-based ideal observer analysis, the estimated
ampling efficiencies from the LAM-based ideal observer
nalysis varied with performance level. This suggests
hat both the simulation-based and the LAM-based effi-
iency estimates are not self-coherent. According to the
AM, the ratio between the slopes and intercepts at two
ifferent performance levels is equal to the corresponding
�2 ratios. The d�2 ratios between 75% and 65% correct,
nd between 85% and 75% correct are 3.06 and 2.36, re-
pectively. For the human observers, the relationship be-
ween the slopes and intercepts at different performance
evels are, however, inconsistent with the predictions of
he LAM �p�0.005�. For our observers, the average ratio
f TvC slopes between the 75% and 65% correct and be-
ween 85% and 75% correct performance levels are 1.73
nd 1.59 in the �45 deg condition. Very similar ratios are
lso obtained for the intercepts. That the observed slope
nd intercept ratios are much lower than the correspond-
ng d�2 ratios confirms our earlier findings that the LAM

hreshold Contrast versus External Noise
ctions

Orientation Separation (��)

6° � 15° � 45°

Intercept Slope Intercept Slope Intercept

0.006 0.34 0.005 0.15 0.003
0.011 0.55 0.007 0.28 0.006
0.020 0.84 0.011 0.47 0.009

0.008 0.54 0.003 0.22 0.005
0.012 0.88 0.005 0.32 0.007
0.019 1.34 0.008 0.46 0.010

0.005 0.45 0.003 0.22 0.000
0.008 0.71 0.005 0.39 0.001
0.013 1.03 0.007 0.65 0.001

0 0.0061 0 0.0051 0
0 0.0163 0 0.0137 0
0 0.0366 0 0.0312 0

of the Human Observers

� 6° � 15° � 45°

0.033 0.018 0.035
0.044 0.030 0.050
0.055 0.044 0.066

0.021 0.011 0.024
0.034 0.019 0.042
0.050 0.027 0.069

0.035 0.014 0.024
0.053 0.023 0.035
0.075 0.036 0.048
red T
e Fun
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s not consistent with the observed threshold ratios be-
ween different performance levels (see [6] for a review).
his is a parallel observation to what was previously
ade on threshold ratios [5,6]. Increased sampling effi-

iency with performance level is, however, consistent with
redictions of observer models that incorporate decision
ncertainty [3,56], template learning [86], or transducer
onlinearity [5].

. ePTM-based Efficiency Estimation
n contrast to the LAM, the ePTM provided an excellent
ccount of observer performance over a wide range of per-
ormance levels in this study. Formulating the ePTM with
n application parallel to the LAM to understand sam-
ling efficiency within the context of other perceptual in-
fficiencies such as nonlinear transducer and multiplica-
ive noise provides a coherent framework for comparing
uman performance to ideal observer performance.
It is assumed that the optimal template for each stimu-

us is a matched filter, and that the decision rule (here,
he difference rule, which is equivalent to a max rule in
his case) is also optimal. Using the actual signal and ex-
ernal noise stimuli used in the study, we computed �IM
6.10 [Eq. (9)]. From the values of �B’s of the best-fitting
PTM, the estimated sampling efficiency, which accounts
or performance in all three criteria, is 0.030, 0.019, and
.031 for CB, JS, and SJ, respectively.
In the ePTM-based ideal observer analysis, we treated

ampling efficiency as a model parameter in the more
omplex ePTM and estimated it in the context of the
odel. This yields a single, consistent sampling efficiency

cross all the performance levels and experimental condi-
ions for each observer.

. DISCUSSION
ll the existing observer models for external noise studies
ave been developed in the context of target detection or
iscrimination or identification of orthogonal (or nearly
rthogonal) targets. In this study, we elaborated and
ested a new form of the perceptual template model, the
ePTM,” to consider identification or discrimination of
onorthogonal targets required in high-precision dis-
riminations, as well as the treatment of feature differ-
nce thresholds. Using the method of constant stimuli, we
ollected full contrast psychometric functions from three
bservers in an orientation identification task at fovea in
our orientation difference conditions (�3°, �6°, �15°,
nd �45° from vertical) and across a wide range of exter-
al noise levels. We showed that the families of TvC func-
ions in the four orientation difference conditions exhib-
ted some very regular properties. The simplest
laboration of the PTM, with the same template gain to
he better matched signal stimulus ��B�, nonlinearity (�),
nternal additive noise �Na�, and coefficient for multipli-
ative noise �Nm� but varying gains of the less-well-
atched template ��W� across the orientation difference

onditions, provided the best fit to all the data, accounting
or 93.3%–98.9% of the variance. Sampling efficiencies of
uman observers were also estimated from the best-
tting ePTM.
From the gains of the perceptual templates in different
rientation difference conditions, we found that the per-
eptual templates are broadly tuned in orientation: the
rientation bandwidth of the perceptual template is about
9.5° and there is considerable overlap between the tem-
lates in relatively high discrimination precision condi-
ions. Based on Fourier analysis, the half-height half-
idth of the Gabor signal used in this study is 39.5°. The
stimated orientation bandwidth of the perceptual tem-
late matches very well that of the Gabor stimuli. The
lose match of the orientation bandwidth of the percep-
ual template with that of the Gabor stimuli suggests that
bservers used near-optimal weights of the visual infor-
ation in the stimulus, supporting the notion of matched
lters in visual recognition [87,88]. However, their sam-
ling efficiencies were very low. Similar results have been
btained by others [89].

The estimated bandwidth of the perceptual template in
he current psychophysical study reflects the orientation
andwidth at the overall observer level. It is much
roader than that of single neurons in early visual corti-
al areas [90,91]. For example, the average tuning width
or orientation was about 14° in a single cell study of cat
ortex [92]. Another study by Campbell and Kulikowski
93] also found that the masking effect of one grating on
nother differed in orientation by approximately 12°–15°.
n the other hand, a good deal of psychophysics research

75,76,82,94–96] has demonstrated that the human visual
ystem is exquisitely sensitive to the orientation of lines
r gratings. For example, in a line orientation identifica-
ion task, Westheimer [96] found that the best thresholds
re around 0.2°–0.8° [85], 0.4°–0.8° [97], and 0.17°.
Several approaches have been proposed to resolve the

pparent discrepancy between broad orientation tuning of
ortical neurons (10°–20°) and acute human orientation
iscrimination threshold (0.2°–0.8°) [18,76,85,98,99]. For
xample, Geisler [76] proposed an ideal detector model
ased on retinal signal and the cone sampling mosaic of
he retina for a hyperacuity task. Westheimer et al. [99]
ssumed that, while detection is determined by the most
xcited orientation-tuned neural element, the sharpness
f suprathreshold orientation discrimination is deter-
ined by the relative activities of two or more broadly

uned orientation-sensitive neural elements signaling the
ifference among those activities. This idea has been
ramed in both the opponent-process [98] and line-
lement [100,101] formulations. These two formulations
hare the same idea that orientation discrimination is not
imited by the bandwidth of the broadly selective neural
lements but by a combination of their noise levels and
he shape of their sensitivity curves (specifically, by the
aximum slope difference). Regan and Beverly [98] made
clear demonstration that a detector that is most sensi-

ive for detecting faint stimuli near its preferred orienta-
ion contributes either almost nothing or mere noise to
he discrimination of subtle orientation differences
round its preferred orientation (since the width of the
rientation tuning curve is broad). They proposed that
ne possible way to discriminate these orientations is to
ompare relative responses from neighboring detectors.
he idea was supported by Waugh et al. [95], who found a
imodal curve with distinct peaks at about 10° on either
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ide of the center line orientation in a vernier task
asked by one-dimensional visual noise. The idea has

lso found support in physiological research [92,102]. For
xample, Bradley et al. [92] measured the minimum dif-
erence in stimulus orientation and spatial frequency that
an produce reliable changes in the response of individual
eurons in cat visual cortex. They compared these values
ith those obtained from behavioral thresholds reported

n other experiments. Although the average minimum ori-
ntation difference that could be signaled reliably by most
ells from their sample was 6.4°, which was well above
he behaviorally determined thresholds, they reported
hat the most selective cells signaled orientation differ-
nces as small as 1.84°, which are comparable in magni-
ude to the behaviorally observed thresholds. Most nota-
ly, the slope was reduced, and the variability was
aximal near the peak of the tuning function. Therefore,
radley and colleagues [92] concluded that neurons that
espond most sensitively to a particular stimulus provide
ittle information about orientation changes in the vicin-
ty of the stimulus. All these results implicate that the

echanisms most sensitive to a minute offset or differ-
nce of features are processors (templates, cells, or filters)
t orientations neighboring the mechanisms that detect
he target.

The ePTM belongs to the general class of psychophysi-
al models that use rather broadly tuned perceptual pro-
essors to achieve high discrimination precision. In the
PTM, visual stimuli are first processed by perceptual
emplates that are tuned to the stimuli in the dimension
f variation. The overlap between the better-matched and
he less-well-matched perceptual templates determines
he discrimination precision. The ePTM extends the ear-
ier models by considering nonlinearities and internal
oise sources of the observer and is capable of modeling
ull psychometric functions over a wide range of external
oise levels and orientation differences.
The ePTM also provides an alternative framework to

stimate sampling efficiencies of human observers. Tradi-
ionally, ideal observer analysis is based only on the sta-
istical properties of the input stimulus without any con-
ideration of the perceptual process [50,84]. In this study,
onventional simulation-based ideal observer analysis re-
ulted in performance-dependent estimates of sampling
fficiencies, because the conventional ideal observer
nalysis is based on linear models that cannot adequately
apture nonlinear properties of the perceptual processes.
y taking into account the internal additive noise, the
AM-based ideal observer analysis allows us to separate
he contributions of internal additive noise from sampling
fficiency [26]. The ePTM-based ideal observer analysis
ursues this important direction. By incorporating addi-
ional observer inefficiencies other than sampling effi-
iency, the ePTM-based ideal observer analysis provides
n excellent account of human performance as well as co-
erent estimates of sampling efficiencies.
The elaborated PTM provides an integrated framework

ithin which to understand the performance limitations
f the observer in the two fundamental measurement re-
imes of contrast thresholds and feature thresholds.
ithin the new elaborated observer framework, we can

haracterize human performance in the “perceptual
pace”—human performance as a joint function of exter-
al noise and feature difference. This in turn will allow us
o address the question of mechanisms associated with
bserver state changes (e.g., attention, perceptual learn-
ng) in a wide range of tasks involving different manipu-
ations of task difficulty (achievable accuracy), including
oth the contrast threshold and feature threshold re-
imes.
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