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Existing observer models developed for studies with the external noise paradigm are strictly applicable only to
target detection or identification/discrimination of orthogonal target(s). We elaborated the perceptual template
model (PTM) to account for contrast thresholds in identifying nonorthogonal targets. Full contrast psychomet-
ric functions were measured in an orientation identification task with four orientation differences across a
wide range of external noise levels. We showed that observer performance can be modeled by the elaborated
PTM with two templates that correspond to the two stimulus categories. Sampling efficiencies of the human
observers were also estimated. The elaborated PTM provides a theoretical framework for characterizing joint
feature and contrast sensitivity of human observers. © 2009 Optical Society of America

OCIS codes: 330.0330, 330.4060.

1. INTRODUCTION

Human performance in detection, discrimination, or iden-
tification tasks depends on many factors, including stimu-
lus factors such as signal contrast, magnitude, distribu-
tion of external noise, and discrimination precision; task
factors such as workload, decision structure, and the state
of the observer (e.g., attention, fatigue, cognitive factors).
However, these factors have mostly been studied in isola-
tion (but see [1]). Perceptual sensitivity, with and without
manipulations of task factors, is typically measured in
two different ways: (1) as contrast threshold at a particu-
lar level of stimulus difference or (2) as feature threshold
at a constant (usually high) contrast. Using contrast
threshold as the dependent measure, contrast sensitivity
studies are usually based on detection of a single stimulus
or discrimination of a pair of stimuli with a large and
fixed feature difference [e.g., discrimination of two Gabors
of +45° Fig. 1(a)]. On the other hand, studies using fea-
ture threshold as the dependent variable usually keep
stimulus contrast at a relatively high level and often in-
volve small feature differences [e.g., discrimination of two
100%-contrast Gabors of = 6; Fig. 1(b)]. Examples include
the hyperacuity and vernier acuity studies [2—4]. At the
theoretical level, virtually all the existing observer mod-
els for external noise studies have been developed and
tested in the contrast domain, for target detection or iden-
tification of orthogonal (or nearly orthogonal) targets
[2—6]. In this study, we developed and tested a new form
of the perceptual template model (the “elaborated PTM,”
or ePTM) to consider identification or discrimination of
nonorthogonal targets in high-precision discriminations.
This new development provides a quantitative account of
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feature-difference manipulations and an integrated model
for both contrast and feature-difference measurements.

A. Perceptual Sensitivity, Observer Models, and
External Noise Methods

Measures of perceptual performance, such as spatial
and/or temporal contrast sensitivity functions [7-15] or
feature thresholds [16—-21] provide the basic building
blocks of our understanding of normal and clinical vision.
To explain perceptual performance at a more fundamen-
tal level, psychophysicists have constructed observer
models based on external noise studies that focus on in-
trinsic limitations of the observer. By separating intrinsic
perceptual limitations of the observer from the character-
istics of the input stimuli, an observer model provides a
framework to generalize results from a particular experi-
ment to predict observer performance in other tasks using
different input stimuli but the same observer characteris-
tics [22]. Indeed, it has been shown that many observer
characteristics are invariant across different perceptual
tasks [22]. This makes the method very useful because it
attributes a wide range of limitations in perceptual sen-
sitivity to a few observer limitations.

Behavioral approaches, including many psychological
paradigms, have been developed to reveal internal limita-
tions of the perceptual processes and constrain observer
models. One major internal limitation, the variability in
perceptual processing, is illustrated by inconsistent per-
formance of the observers when they are given the same
stimuli multiple times [2,23]. Due to information loss dur-
ing neural transmission, sampling errors from receptors,
random bursts of neuronal spikes, and/or internal varia-
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Fig. 1. Examples of a simple Gabor orientation identification task in the (a) contrast and (b) feature domain.

tion of stimulus representation, the variability can be col-
lectively modeled by equivalent internal noises that pro-
duce the degree of inefficiency exhibited by the perceptual
system [2,5,24-26]. Many behavioral paradigms have
been developed to “externalize” the variability of the in-
ternal responses by adding external noise to the input
stimulus against which to measure the perceptual vari-
abilities. These include various procedures related to
critical band masking [27], the equivalent-input noise
method [2,4,28-30], the double-pass consistency test
[2,23], and the classification-image method [31]. We focus
on the equivalent-input-noise method in this article.

1. Equivalent Input Noise Method

The equivalent-input-noise method was originally devel-
oped by engineers to measure the intrinsic noise of elec-
tronic amplifiers [32-34] and later adopted by sensory
psychologists to measure the internal noise of the percep-
tual system [4,29,30,35] (see [6] for a recent review). The
basic idea is that the perceptual system functions like a
noisy amplifier, and the internal noise can be estimated
by systematically manipulating the magnitude of the ex-
ternal noise superimposed on signal stimuli and measur-
ing threshold-versus-external-noise contrast (7TvC)
functions—signal stimulus energy required for an ob-
server to maintain a certain level of performance as a
function of the contrast of the external noise.

The equivalent-input-noise method has been used to
reveal internal noise in perceptual processes in a wide
range of both auditory [31,36-42] and visual
[4,5,24,26,28-30,35,43-52] tasks. The paradigm has also
been further developed to investigate mechanisms under-
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lying the effects of various cognitive, developmental, and
disease states on the perceptual system [5,6,53-55].

2. Existing Observer Models

Observer models developed for external noise studies, ei-
ther for target detection or for discrimination or identifi-
cation of orthogonal (or nearly orthogonal) targets, in-
clude the linear amplifier model [4], the induced noise
model [2], the linear amplifier model with decision uncer-
tainty [56], the induced noise and uncertainty model [3],
and the perceptual template model [5].

In a linear amplifier model (LAM), perceptual thresh-
olds are determined by two factors: internal additive
noise and observer’s sampling efficiency [4,22]. The LAM
models TvC functions at a single performance level, but
generally fails to account for TvCs at different perfor-
mance levels [5]. Moreover, estimates of internal additive
noise and sampling efficiency from the LAM depend on
the particular performance criterion level at which con-
trast thresholds are defined and measured. Various fixes
of the LAM have been proposed, including the addition of
decision uncertainty [56], induced noise [2], both decision
uncertainty and induced noise [3], or nonlinear trans-
ducer and multiplicative noise [5]. Lu and Dosher [6] con-
ducted a systematic and comprehensive review of the ex-
ternal noise paradigms and all the existing observer
models developed to account for performance in external
noise studies. They concluded that the five-component
PTM, with a perceptual template, a nonlinear transducer
function, internal additive noise, internal multiplicative
noise, and a decision structure, provided the best account
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of all the existing data on target detection or discrimina-
tion of orthogonal targets in the visual domain.

There has been a significant parallel development of
observer models in pattern vision [57-67]. For example,
in pattern masking studies, instead of external noise, pat-
tern masks (e.g., sine waves of the same or different fre-
quencies, orientations, etc.) are used to probe the proper-
ties of the visual system. Observer models developed and
tested in pattern masking studies usually consist of mul-
tiple low-level channels and a pooling stage that com-
putes a weighted sum of the outputs of the low-level chan-
nels [65-67]. In contrast, observer models developed in
external noise studies use a simplified notion, the percep-
tual template, to represent the overall sensitivity of the
perceptual system, corresponding to the weighted contri-
butions of low-level channels in multichannel models,
without referring explicitly to the low-level visual chan-
nels. The benefits of this formulation are that (1) it relies
on very few assumptions about the low-level visual chan-
nels, and (2) it uses fewer model parameters to describe a
large range of data in external noise studies. The down-
side is that the formulation makes it difficult to model in-
teractions of low-level visual channels. On the other
hand, although they focus on the different properties of
the visual system (nonlinearity versus internal noise, in-
teractions of low-level channels versus a global template),
the functional forms of some of the observer models in ex-
ternal noise studies and pattern masking studies are very
similar (see [6]). In this article, we describe our attempt to
elaborate an observer model developed for external noise
studies.

3. Ideal Observer Analysis

In this study, data were collected in a Gabor orientation
identification task over a wide range of conditions (4 [ori-
entation differences] X 6[external noise levels] X 5[signal
contrasts]) for three observers. This large parametric data
set gave us an opportunity to use ideal observer analysis
to estimate human sampling efficiencies over a wide
range of experimental conditions. This was done in three
different ways. First, we simulated an ideal observer in
all the experimental conditions and estimated sampling
efficiencies based on the simulations. These estimated
sampling efficiencies depended on the performance level
at which contrast threshold was defined because the
simulated ideal observer is a linear model that cannot ad-
equately capture the nonlinear properties of the human
perceptual processes. To illustrate this point, we per-
formed another ideal observer analysis based on the lin-
ear amplifier model, which is essentially an ideal observer
model [28]. In the LAM, human inefficiencies are attrib-
uted to internal additive noise and sampling efficiency
relative to the ideal observer. Although traditional ideal
observer analysis focuses only on experimental conditions
in which external noise is so high that effects of internal
noise are ignored, the LAM-based analysis includes a
wide range of external noise conditions. The method ex-
plicitly considers and discounts effects of internal noise on
human performance in estimating sampling efficiency.
The LAM-based ideal observer analysis is consistent
with the simulation-based analysis because, like the
simulation-based ideal observer analysis, the LAM-based
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ideal observer analysis results in performance-level-
dependent sampling efficiency estimates. Finally, we ex-
plored the relationship between the ePTM and ideal ob-
server analysis. By treating sampling efficiency as a
model parameter in the more complex ePTM, we obtained
performance and task-independent estimates of sampling
efficiency for each observer.

B. Overview

The goal of this study is to elaborate the PTM to incorpo-
rate tasks involving identification or discrimination of
nonorthogonal targets. We first describe an experiment
that jointly manipulated the magnitude of external noise
and the degree of target feature difference. We then
present the elaborated PTM (ePTM) that explicitly con-
siders target feature difference and document its ability
to account for the experimental data.

2. EXPERIMENT: TvC FUNCTIONS IN A
RANGE OF FEATURE DIFFERENCES

Using the method of constant stimuli, we measured full
contrast psychometric functions of three observers in an
orientation identification task in varying amounts of ex-
ternal noise at fovea. Four orientation differences (+3°,
+6°, +15°, and *+45° from vertical) were examined, sepa-
rated in miniblocks in each session across six levels of ex-
ternal noise. Three TvC functions, at criterion perfor-
mance levels of 65, 75, and 85% correct, were estimated in
each orientation difference condition.

A. Method

1. Participants

Two naive observers (CB, JS) and the first author (SJ)
participated in the experiment. All observers had
corrected-to-normal vision and were experienced in psy-
chophysical studies.

2. Apparatus

The experiment was conducted on a Macintosh Power G4
computer, running MATLAB with Psychtoolbox exten-
sions [69]. All displays were shown on a 17-in. Apple Stu-
dio Display monitor with a refresh rate of 120 frames/s.
The screen resolution was set to 640 X 480. A special cir-
cuit was used to produce a monochromatic signal of high
grayscale resolution (>12.5 bits) [70]. Gray levels were
linearized using a psychophysical procedure [71]. The
available display contrast ranged from —1.0 to 1.0. All
displays were viewed binocularly with natural pupils at a
distance of approximately 72 cm. A chinrest was used for
observers to maintain head position throughout the ex-
periment.

3. Stimuli
The signal stimuli were Gaussian-windowed sinusoidal
gratings, oriented *+3°, =6°, =15°, and *=45° from verti-
cal. The luminance profile of the Gabor stimuli is de-
scribed by
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L(x,y) = Lo(1.0 + ¢ sin (27f(x cos 0+ sin 6)) el /207
1)

where c is the contrast of the Gabor, L is the background
luminance, set in the middle of the dynamic range of the
display (L,,;,=1 cd/m?; L,,,.=55 cd/m?), f=1.92 c¢/d is the
center spatial frequency of the Gabor, and s=0.52 deg is
the standard deviation of the Gaussian window. The Ga-
bors were rendered on a 64 X 64 pixel grid, extending
2.78° X 2.78° of visual angle.

External noise images were constructed using 2 X 2
pixel elements (0.087° X 0.087°). In every trial, the con-
trasts of all the noise elements were drawn randomly and
independently from the same Gaussian distribution with
mean 0 and one of six standard deviations: 0, 0.05, 0.07,
0.12, 0.20, and 0.33. Because the display contrast ranges
from —1.0 to 1.0, a sample with standard deviation of 0.33
conforms reasonably well to a Gaussian distribution. Both
signal and noise images were centered at fixation.

4. Design
The method of constant stimuli was used to measure TvC
functions in four Gabor orientation difference conditions
(+3°, +6°, +15°, and *=45° from vertical). In each exter-
nal noise condition, the psychometric function for the two-
alternative forced-choice identification task was sampled
at five signal stimulus contrasts, determined from pilot
tests to span the full range of performance levels. There
were therefore a total of 4 [orientation differences] X 6
[external noise levels] X 5 [signal contrasts] conditions.
To reduce decision uncertainty, the four orientation dif-
ference conditions were run in separate miniblocks of 30
trials each. Within each block, there was one trial from
each of the 30 [external noise X signal contrast] condi-
tions. Each experimental session consisted of 40
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miniblocks, 10 for each orientation difference condition.
The order of trials in each miniblock and the order of
miniblocks were both randomized in each session. All ob-
servers ran 10 sessions of 1200 trials, for a total of 12,000
trials or 100 trials per experimental condition.

5. Procedure

In the beginning of each miniblock and each trial, observ-
ers were reminded of the orientation difference condition
by a text string (e.g., “3 deg”) in the center of the display.
Each trial began after the observer read the string and
pressed the space bar on the computer keyboard. This
was followed by a display sequence, consisting of a 500 ms
fixation cross, a 8.3 ms external noise image, a 8.3 ms sig-
nal image, another 8.3 ms independent external noise im-
age, and a blank screen until the end of response, all pre-
sented in the center of the monitor. Observers identified
the orientation of the Gabor stimulus, using keys “s,” “d,”
or “” for counterclockwise orientations and “j,” “k,” or “1”
for clockwise orientations. The six keys were used to re-
duce finger errors; observers generally used “f” and “j.” A
system beep followed each incorrect response.

B. Results

1. Psychometric Functions
A total of 24 psychometric functions were obtained from
each observer, one for each orientation difference and ex-
ternal noise condition (Fig. 2), sampled at five predefined
signal contrast levels selected for each external noise con-
dition. Observers exhibited very small overall bias in
their choice of the Left/Right responses: 47.5% vs. 52.5%,
51.2% vs. 48.4%, and 50.8% vs. 49.2% for CB, JS, and SJ,
respectively.

The psychometric functions were first fitted with the
Weibull:

p(correct response)

01 02 04 038 01 02 04

01 02 04 o038 01 02 04 o038

signal contrast (%)

Fig. 2. Full psychometric functions in all the experimental conditions. Smooth curves represent the best fitting Weibull functions.
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Table 1. Parameters of the Best-Fitting Weibull Functions
6 h 70 T1 ] T3 T4 T5 N 7'2
CB + 3° 0.585 0.226 0.216 0.266 0.368 0.548 0.815 0.011 0.8006
* 6° 0.511 0.164 0.164 0.145 0.241 0.346 0.576
* 15° 0.372 0.131 0.111 0.116 0.169 0.251 0.407
+ 45° 0.473 0.101 0.091 0.098 0.122 0.209 0.298
JS + 3° 0.697 0.209 0.228 0.294 0.427 0.752 — 0.029 0.8766
* 6° 0.363 0.150 0.131 0.155 0.261 0.376 —
+ 15° 0.359 0.120 0.108 0.112 0.176 0.309 —
+ 45° 0.293 0.109 0.094 0.109 0.122 0.201 —
SJ * 3° 0.395 0.181 0.178 0.229 0.338 0.482 0.819 0.001 0.9017
* 6° 0.405 0.132 0.128 0.153 0.206 0.307 0.509
+ 15° 0.338 0.098 0.095 0.113 0.170 0.287 0.449
+ 45° 0.451 0.072 0.072 0.081 0.127 0.189 0.350
Pe)= £+ (1= £=N)(1—e @7 (2) functions shifted to the right as the external noise in-

where c is the signal contrast, 7is the threshold, 7 is the
slope of the psychometric function, £ = 0.5 represents the
chance performance level, and \ represents observer’s
lapse rate. A maximum-likelihood procedure was used
[72]. The likelihood is defined as a function of the total
number of trials N;, the number of correct trials K;, and
the percent correct predicted by Eq. (2) in each experi-
mental condition i:

1
it

likelihood = H m

PR -PyNE(3)

where Il runs across all the experimental conditions for
an observer.

Nested-model tests based on y? statistics were used to
compare constrained (reduced model) and unconstrained
(full model) fits to the psychometric functions:

max likelihoody,; )

max likelihood,,q,ceq

X*(df) =2 log( (4)

where df= kfull =R reduced-

The following constraints were used in fitting the psy-
chometric functions: (1) Each observer has a single lapse
rate (\) across all the orientation difference and external
noise conditions. (2) In each orientation difference condi-
tion, the psychometric functions in all the external noise
conditions have the same slope (7). The Weibull ac-
counted for 80.1%, 87.7%, and 90.2% of the variance for
observers CB, JS [73], and SJ, respectively. The con-
strained psychometric function fits were statistically
equivalent to the unconstrained models in which an inde-
pendent slope value was assumed for each external noise
level in each orientation difference condition [x2(20)
=0.3416 and 0.3336 for CB and SJ respectively, and
x2(16)=0.3484 for JS. p>0.90 for all observers].

The best-fitting Weibull functions are shown as smooth
curves in Fig. 2. The parameters of the best-fitting model
are listed in Table 1. The lapse rate was very low ( <1.4%)
across the board. The two most prominent features of the
family of psychometric functions are as follows: (1) In
each orientation difference condition, the psychometric

creased, and (2) the slope of the psychometric functions
increased as the orientation difference increased from
+3° to £45°.

2. TvC Functions

Contrast thresholds at performance levels of 65%, 75%,
and 85% correct, corresponding to d’ of 0.5449, 0.9539,
and 1.4657, were computed from the best-fitting Weibull
functions. The thresholds are plotted as TvC functions in
each orientation difference condition in Fig. 3. The stan-
dard deviation of each threshold was calculated using a
re-sampling method [5,74].

The external noise contrast manipulation was highly
effective. Averaged across discrimination precision condi-
tions and performance levels, thresholds increased 236%,
177%, and 340% from the zero external noise condition to
the highest external noise condition for CB, JS, and SdJ,
respectively (note: the highest external noise condition for
JS is lower than that for CB and SJ). Decreasing orienta-
tion difference (and thus increasing the discrimination
precision) had two effects on the TvC functions. It in-
creased thresholds in all the external noise conditions. Av-
eraged across external noise conditions and observers,
thresholds increased 32%, 69%, and 156% from the lowest
discrimination precision condition (+45°) to the highest
discrimination precision condition (£3°). It also increased
the threshold ratio between different performance levels
for each external noise condition. Averaged across exter-
nal noise levels and observers, the threshold ratio be-
tween 85% correct and 75% correct performance levels in-
creased from 1.2 to 1.4; the threshold ratio between 75%
correct and 65% correct performance levels increased
from 1.3 to 1.5. In the following section, we develop an
ePTM to account for all these effects.

3. MODELING

A. The ePTM

Observer models developed for discrimination or identifi-
cation in external noise assume the existence of a tem-
plate tuned to each to-be-identified stimulus. The original
PTM as well as all the other observer models in external
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Fig. 3. TuvC funcitons at 65%, 75%, and 85% performance levels in the four orientation difference conditions. Smooth curves represent

the best-fitting ePTM. Error bars denote one standard deviation.

noise studies were constructed for cases where any single
stimulus plausibly activates only one perceptual template
(e.g., Gabors of orientation +45°). Here, we extended the
original PTM [5] to include variation in the feature di-
mension in addition to external noise and signal contrast.

We elaborated the PTM based on the results of an ex-
tensive analysis of all the major existing observer models
developed in external noise studies [6], including the lin-
ear amplifier model [4], the induced noise model [2], and
the induced-noise-plus-uncertainty model [3]. The PTM
accommodates all the known “standard” properties of
data in external noise experiments. It also provides the
best qualitative and quantitative account of a full range of
representative data sets.

In the PTM, perceptual inefficiencies are attributed to
three limitations: internal additive noise that is associ-
ated with absolute thresholds in perceptual tasks, inter-
nal multiplicative noise that is associated with Weber’s
law behavior of the perceptual system, and perceptual
templates tuned to the target stimuli but that may be
broad enough to allow external noise or distracters to af-
fect performance. In the original PTM [Fig. 4(a)l, the ob-
server is characterized by four parameters: gain to the
signal stimulus (B), exponent of the nonlinear transducer
function (), internal additive noise (IV,), and coefficient of
the multiplicative internal noise (NV,,). To model two-
alternative forced-choice identification or discrimination
of nonorthogonal targets, in the [ePTM, Fig. 4(b)], we in-
troduce two perceptual templates, one for each of the two
stimulus categories. The two templates are assumed to be
identical except in the feature dimension under study. In
a given trial of a two-alternative forced-choice identifica-
tion task, a single stimulus is presented and must be
identified. The stimulus is better matched to one template

Tgp(x,y,t) (with gain Bg) and less well matched to the
other template Ty(x,y,t) (with gain By less than Bg). For
example, if two orientations are to be discriminated, two
templates are used and a given target stimulus matches
one of the templates relatively closely, and—if the two ori-
entations are sufficiently similar—that target stimulus
also matches the other template to some degree because
the two templates are also relatively similar. We next de-
scribe the components of the ePTM.

1. Input Stimulus

The model considers input stimuli that include a signal
stimulus (i.e., a Gabor of a certain orientation) embedded
in white Gaussian external noise. For a signal stimulus
with contrast ¢ superimposed with white Gaussian noise
images—images made of pixels whose contrasts are
samples of jointly independent, identically distributed
Gaussian random variables with mean zero and standard
deviation N,,,—the input stimulus can be expressed as

S(x’yat) =CSO(x’y’t) +Nextg(x’y’t)’ (5)

where Sy(x,y,t) represents the spatiotemporal pattern of
the signal stimulus and g(x,y,t) represents the various
contrasts of an external noise image whose value at a par-
ticular point (x,y,t) is drawn from a Gaussian distribu-
tion with mean 0 and standard deviation 1.0.

2. Template Matching
The input stimulus S(x,y,¢) is matched to both templates,
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Fig. 4. Schematic representations of the original PTM and the ePTM. In the ePTM, two detectors, one better matched to the signal
stimulus in a given trial (with gain Bg) and the less-well-matched to the signal stimulus (with gain By), are used to model identification

of two nonorthogonal targets.

YBI=JffTB(x5y’t)S(x’y’t)dxdydt
=CJJJTB(x’y’t)SO(x7y7t)dxdydt

+Nextf f f TB(x,y,t)g(x,y,t)dxdydt, (63)

YlefjfTW(x,y,t)S(x,y,t)dxdydt
=cfffTW(x,y,t)SO(x,y,t)dxdydt

+New f f J Ty(x,y,t)g(x,y,t)dxdydt.  (6b)

For a given pair of templates and signal stimuli, the
values Mpg=[Tg(x,y,t)So(x,y,t)dxdyds and My
=[Tw(x,y,t)Solx,y,t)dxdydt are constant;
ITg(x,y,t)g(x,y,t)dxdydt and [Tywlx,y,t)g(x,y,t)dxdydt
are Gaussian random variables with mean 0 and a fixed
standard deviation o7y. The outputs from template
matching can be rewritten as

Yp1=Mpc + Nyorng1(0,1), (7a)

Yw1=Myc + Noyorngs(0,1), (7b)

where g1(0,1) and g5(0,1) are two samples from the stan-
dard normal distribution. The two samples may be par-
tially correlated if Tg(x,y,t) and Tyw(x,y,¢) overlap each
other.

3. Nonlinear Transducer

The outputs of the two perceptual templates are then pro-
cessed by an expansive nonlinear transducer function
(Output=sign(Input)|Input|”), chosen based on similar
choices in pattern vision [75,76]. If a stochastic model
were fully implemented, nonlinearities (other than 1.0)
would require the inclusion of cross products and consid-
eration of the stochastic properties prior to the nonlinear-
ity. This formulation is complex, and in general stochastic
models based on Monte Carlo simulations are necessary
to model the nonlinear transducer.

In developing the PTM, and in order to simplify the
task of model estimation and fitting, we introduced ana-
lytical simplifications of the stochastic model by using the
expectations of the random variables in place of the ran-
dom variables and ignoring all the cross products. The ap-
proach of using analytic simplifications of the full stochas-
tic model in the (analytic) PTM has been validated in
various ways. First, we (Dosher and Lu [54]) have carried
out simulations of the stochastic PTM to show that key
properties of the analytic PTM and mechanisms of state
change in the analytic PTM are asymptotically consistent
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with the stochastic model [77]. Second, the distributional
assumptions of the signal detection applications were
shown to be approximately true of the stochastic PTM.
Third, the analytic PTM has proven quite robust in ac-
counting for a wide range of data from now dozens of
studies that have evaluated not just single conditions but
full TvC functions at multiple (usually two or three) cri-
terion threshold levels (proxies for the full psychometric
functions) [48,54] (see [6] for a review).

We follow the same development in the PTM and ap-
proximate the outputs of the two detectors after the non-
linear transducer as [78]:

Ypo = (Mpe) + NLoh F(y1)g1(0,1), (8a)

ext

Ywe = (Myc)" + N Loyl N (71)85(0,1), (8b)

ext

where g,(0,1) and g5(0,1) are two samples from the stan-
dard normal distribution. Generally absorbed in later nor-
malization, F(y;) is a constant that corrects for the effect
of nonlinearity on the standard deviation [79].

Because in behavioral studies, the values of Mg, My,
and N,,,ornF(y1) can be known only to a constant, with-
out losing any generality we normalized everything rela-
tive to opnF'(y1). This essentially sets opyF(y;)=1, that is,
the total gain of the perceptual templates (integrated over
space and time) to 1.0. We define

ffjTB(x,y,t)So(x,ytdxdydt

Pn= ornF (71) arnF (1)

(9a)
JffTW(xy t)So(x,y,t)dxdydt

p= oTNFm P

(9b)
and rewrite Eqgs. (8a) and (8b) as

Yo = (Bge) + N1g1(0,1), (8¢c)
Yie = (Bwe) 2+ N2&5(0,1). (8d)

In this formulation, the definition of 8z and By depends
on F(v,), which is a function of y;. In situations in which
a single v, is involved, F(y;) is just a correction factor on
the absolute value of Bz and Byy. In those few situations in
which multiple y;’s are involved, F(y;) for the different
y1’s must be explicitly considered in the modeling process.
Most situations in which the PTM has been evaluated in-
volved a single y; [53-55,80,81].

For two templates with gains Bg and By, the variations
in Ypy and Yy, are partially correlated. When the two
templates cease being well approximated as orthogonal
and have more overlap, i.e., when By is significantly
greater than 0, the response to external noise will become
more similar as well. We have simulated a stochastic ver-
sion of the ePTM and examined the covariance between
the outputs of the two templates after the nonlinear
transducer. We found that over a large range of signal
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contrast levels (0 to 100%), template overlaps (=1 to =45
deg), and vy;’s (1.0 to 3.0), the effective variance of (Yp,
—Ywe) can be corrected by a factor \1-8,,/85: the correc-
tion factor accounted for 95.3% of the variance in the
simulation study. Therefore, if the perceptual system can
utilize the partial correlation of the templates’ response to
the external noise in decision making, then the effective
variance of the external noise should be corrected by a
factor of \1-8,,/8z.

4. Additive and Multiplicative Noise

The model posits that each detector has independent in-
ternal additive and multiplicative noise. In both detec-
tors, the additive noise has mean 0 and standard devia-
tion N,. The variance of the multiplicative noise is a
function of the total contrast energy going through each
detector. In computing multiplicative noise, the outputs of
the two templates are rectified and passed through an-
other nonlinear transducer function (Output=|Input|?2);
stimulus energy over a broad range of space, time, and
features may be integrated in computing multiplicative
noise. The variance of multiplicative noise is proportional
to the total stimulus energy in each detector:

0% =NA[N22 4 (Bge) 7). (10a)
Py = N2INT2 4 (Bye)?2]. (10b)

After adding the internal additive and multiplicative
noises, the outputs of the two detectors are

Yp3=(Bpe)" +N1g1(0,1) + N,g5(0,1) + 0,,585(0,1),
(11a)

Yy = (Bwe) "t + N185(0,1) + N,g4(0,1) + 0,,386(0,1),
(11b)

where g5(0,1), g4(0,1), 5(0,1) and g4(0,1) are indepen-
dent samples from the standard normal distribution.

5. Decision
We assume that a difference rule is used at the decision
stage. The outputs of the two detectors, Yp3 and Yy are
compared:

D =Yps - Yws=[(Bgc)" - (Bwe) "]+ NJL[E1(0,1) - §2(0,1)]
+N,[85(0,1) - 84(0,1)] + [0,,885(0,1) — 0, w&6(0,1)].
(12)

In this comparison, the total variance is determined by
the variance of all the random variables:

0% 1= 2\1 = Byl BeN"1 + N2[2N>72 + (Bge)?”2 + (Bye) 2]

ext ext

+2N2. (13)

The average signal-to-noise ratio (d /) for the comparison
is
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, mean(Ygs) — mean(Yyys)
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(Bpe) ™ = (Bwe) ™

= . (14)
2 2, 2,
ototal/2 9 9 (ﬁBC) 2+ (IBWC) 2
\/\/1 - BwlBeN, ]} + N2| N, 72 + 5 +N?
[
In the special case where y=y;=17,, corresponding to 12
the situation where the rising portion of the TvC function = ?(fot +N?%). (17b)
B

has a slope of 1.0, we can solve Eq. (14) to obtain thresh-
old signal contrast c, as a function of external noise con-
trast N,,, at a given performance criterion (i.e., d'):

[(VT= BulBs + N%)NZ, + N2 | V27 (15)
c,= .

(BY - B NZ(BE+ B
d? 2

In all the applications of the PTM approach so far, we
have found that the PTM with y=y;= vy, has provided ad-
equate descriptions of the empirical data. In the rest of
this article, we will restrict our discussion to this simpli-
fied set of PTMs. The same logic could be followed to un-
derstand the properties of PTMs with y; # ys.

It follows directly from Eq. (15) that for any given ex-
ternal noise contrast VN,,;, the threshold signal contrast
ratio between two performance criterion levels (corre-
sponding to d4 and d}), is

(B3 - BY)  NzBy+B) |

Cry d;? 2
—= (16)
¢ | (B -BY) NLBT+BY)

d? 2

Thus, the ePTM predicts that threshold signal contrast
ratio between two performance criterion levels in any ex-
ternal noise contrast condition is a nonlinear function of
the corresponding d’, independent of the particular exter-
nal noise level. These ratios are predicted to be indepen-
dent of the external noise contrast (a testable model prop-
erty) and form one competitive basis for favoring the PTM
over alternative observer models. A full specification of all
the parameters of an ePTM requires measurement of TvC
functions at three (or more) separate levels of feature dif-
ferences at each of three (or more) performance levels.

6. Relationship to LAM and Ideal Observer

Analysis

The ePTM is elaborated from the LAM by incorporating
additional processing of the stimulus and noise, including
the nonlinear transducer, and multiplicative noise. If we
set y =1, N,,=0, and By=0, the ePTM is “reduced” to the
LAM, and Eq. (15) becomes

12 1/2
c,= lﬂ—%(foﬁNg)} . (a7

The LAM was developed as a form of an ideal observer
model. If we square both sides of Eq. (17), we have

Because Bp reflects signal gain of the human observer, we
can reformulate it in terms of the gain S5 of the ideal ob-
server and sampling efficiency v

B = \vBip. (18)

Substituting Eq. (18) into Eq. (17b), we obtain the
efficiency-based formulation of the LAM [26]:

12

1
2= ——(N%,+N?) = —(N%,+ N?), (17¢)
B Uk

ext

where k= 35/d'?. If the slope of the TvC function is a,
then the efficiency is

1 d/2

v ok aﬁ%B . (19)
Equation (19) allows one to estimate LAM sampling effi-
ciency from the slope of the threshold versus external
noise functions. Although traditional ideal observer
analysis focuses only on experimental conditions in which
external noise is so high that the contributions of internal
noise can be ignored, the LAM analysis includes a wide
range of external noise conditions. The method explicitly
considers and discounts effects of internal noise on hu-
man performance in the computation of efficiency.

This reformulation of the LAM also illustrates the re-
lationship of the ePTM to ideal observer analysis and in-
dicates in a parallel development how to estimate sam-
pling efficiency through the ePTM. Essentially, we can
reformulate Bg in terms of the gain B;p of the ideal ob-
server and sampling efficiency of the human observer v:

Bz = Bz (20)

In simple detection tasks, the template of the ideal ob-
server is matched to the signal stimulus. In identification
or discrimination tasks, the template of the ideal observer
is matched to the signal stimulus—which then yields an
ideal computation if the decision rule is ideal [82,83]. We
can apply Eq. (9) to the actual stimuli used in the experi-
ments to compute the gain of the ideal observer.

Although other components of the ePTM, the nonlinear
transducer, multiplicative noise, and the gain of the less-
well-matched template also affect human performance,
our approach here is to model them explicitly in the ePTM
and discount their contributions in estimating human
sampling efficiency, just as additive noise is explicitly con-
sidered and discounted in the LAM-based ideal observer
analysis.
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Table 2. Parameters of the Best-Fitting ePTM

CB JS SJ
Bz 1.062 0.8290 1.075
Bw* 3° 0.9486 0.7620 1.023
* 6° 0.8515 0.6921 0.9387
+ 15° 0.6966 0.5447 0.8458

+ 45° 0 0 0
N, 0.1047 0.1170 0.0261
N, 0.0098 0.0024 0.0031
b 1.818 2.216 2.050
r? 0.9749 0.9335 0.9890
F(6,59) 0.123 0.017 0.019
F(3,62) 0.000 0.000 0.000
F(3,62) 0.257 0.092 0.042

4. EVALUATING THE ePTM

To evaluate the ePTM using the current parametric data
set, we tested whether a single model with only By vary-
ing as a function of orientation difference can fit all the
TvC functions in all the experimental conditions (with
Bw=0 in the =45 condition). The model includes seven pa-
rameters: shared N,, N,,, 7, and Bg across the orientation
difference conditions, and three By’s for the +3, =6, and
+15 deg conditions of the experiment. Fits of this most re-
duced seven-parameter model to the data were compared
with three more saturated models, including (1) two mod-
els with 10 parameters that allowed N, or N,,, in addition
to By, free to vary in the four orientation difference con-
ditions and (2) one model with 13 parameters that al-
lowed both N, and N,, free to vary in the four orientation
difference conditions. In fitting the ePTM, the standard
deviation of external noise was multiplied by \5 to reflect
the use of two independent external noise frames in each
trial.

A least-square procedure with the following cost func-
tion,
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RSS = E [log(cz;redicted) _ log(cTeasured)]2’ (2 1)

where c{’r”"di“ed is computed using Eq. (15), and X repre-

sents summation across three performance levels of all
the external noise and orientation difference conditions
for an observer, was used to search for the best fitting pa-
rameters of each model. The goodness of model fits was
gauged by

E [log(cgredicted) _ log(c:_neasured)]Z

E [log(cr;wasured) _ mean(log(c:_neasured))]z ’

(22)

r2=1.0-

where ¥ and mean () run across all the experimental con-
ditions for an observer. An F-test for nested models was
used to statistically compare the models. For two nested
models with kg, and &,.qyc.q Parameters, the F' statistic is
defined as

(r}%ull - r%educed)/dfl
(1 - r?ull)/dfz

where df1=kp—Rrequced; and dfo=N—-kp,;; N is the num-
ber of predicted data points.

The most reduced model, which only allows By free to
vary across discrimination precision conditions, ac-
counted for 97.4%, 93.3%, and 98.9% of the variance for
CB, JS, and SJ, respectively. For all three observers, al-
lowing N, and/or N,, free to vary across the four orienta-
tion difference conditions did not significantly improve
the fits (all p>0.25). We conclude that the most reduced
model in which the gain of the less-well-matched tem-
plate varies as a function of orientation difference pro-
vides the best account of the TvC functions. The param-
eters of the best-fitting model are listed in Table 2.

In Fig. 5, we plotted the average By/Bg of the best-
fitting model of the three observers as a function of the
orientation difference. If we assume that across the four
orientation difference conditions, only the overlap be-
tween the better matched and less-well-matched tem-

F(dfy,df3) = ) (23)

1 T T T . T T
0.8
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orientation Difference (40)

Fig. 5. Schematic representation of the perceptual template based on normalized By.
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plates changes but the shapes of the perceptual template
remains the same and can be modeled as a Gaussian, we
can estimate the bandwidth of the perceptual template by
fitting a Gaussian to the data in Fig. 5. The resulting half-
width bandwidth at half-height is 39.5°.

The ePTM without the correction factor of the covari-
ance of the outputs of the two perceptual templates in
each orientation difference condition was also evaluated.
Although estimates of the model parameters are slightly
different, the general qualitative results did not change.

5. IDEAL OBSERVER ANALYSIS

A. Simulation-Based Analysis

The performance of an ideal observer was simulated us-
ing the stimuli and tasks in the experiment, with the as-
sumption that the ideal observer has an integration win-
dow that is at least 25 ms, which is the duration of the
stimulus in each trial of the experiment. The TvC func-
tions at three performance levels (65%, 75%, and 85% cor-
rect) for the ideal observer are plotted in Fig. 6 as squared
contrast threshold cZ;,,; versus the variance of the exter-
nal noise functions. A linear function,

e, (Peltask) = pygeq(Pcltask)N2,. (24)

provided an excellent account of these TvC functions (r2
=0.9999). The slopes of the TvC functions u(Pc|task) for
the four orientation difference conditions at 65%, 75%,
and 85% correct performance levels are listed in Table 3.

We also replotted the TvC functions of the human ob-
servers in terms of squared contrast thresholds versus ex-
ternal noise variance in Fig. 6. Again, the variance of the
external noise was corrected by a factor of 2 to reflect the
use of two independent external noise frames in each

*3°
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trial. A linear regression analysis was used to extract the
slopes and intercepts of the human TvC functions

cman(Peltask,00s) = pryman(Pcltask,0bs)N2, + b.
(25)

The linear equation [Eq. (25)] provided excellent account
of the human data, accounting for 99.8%, 99.3%, and
99.8% variance for CB, JS, and SJ, respectively. The
slopes and intercepts are listed in Table 3.

We then calculated the sampling efficiencies of the hu-
man observers using the following definition [28]:

MlIdeal (Pc | task)

uPc|task,obs) = (26)

:uHuman(Pc|taSk,0bs) '

The results are listed in Table 4.

For the three observers in this study, sampling efficien-
cies ranged from 0.018 to 0.098. In a given orientation dif-
ference condition, the estimated sampling efficiency in-
creased with performance level. For example, for observer
CB, sampling efficiency = 0.035, 0.050, and 0.066 at 65%,
75%, and 85% correct performance levels, respectively, in
the +45 deg condition. The dependence of the estimated
sampling efficiency on the performance level reflects a
major shortcoming of the conventional ideal observer
analysis, which uses a linear model to estimate properties
of the often nonlinear perceptual processes. We further
discuss this point in the next section.

B. LAM-Based Analysis

The LAM predicts a linear relationship between squared
contrast threshold and the variance of external noise. For
nonoverlapping stimulus categories (45 deg), ideal ob-
server analysis based on the efficiency-based formulation

*15° *45°
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Fig. 6. TvC functions at 65%, 75%, and 85% performance levels in the four orientation difference conditions, plotted as squared contrast
thresholds versus variance of external noise for the three human observers (first three rows) and the ideal observer (last row). The lines

represent the results of the linear regression analysis.
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Table 3. Slopes and Intercepts of the Squared Threshold Contrast versus External Noise
Variance Functions

Orientation Separation (A6)
+ 3° * 6° + 15° + 45°
Percent Correct
Observer (%) Slope Intercept Slope Intercept Slope Intercept Slope Intercept

CB 65 0.88 0.015 0.51 0.006 0.34 0.005 0.15 0.003
(r?=0.9975) 75 1.94 0.032 1.02 0.011 0.55 0.007 0.28 0.006
85 3.75 0.062 1.81 0.020 0.84 0.011 0.47 0.009
JS 65 1.74 0.005 0.79 0.008 0.54 0.003 0.22 0.005
(r?=0.9928) 75 4.48 0.014 1.30 0.012 0.88 0.005 0.32 0.007
85 10.14 0.032 1.98 0.019 1.34 0.008 0.46 0.010
SJ 65 1.31 0.009 0.49 0.005 0.45 0.003 0.22 0.000
(r?=0.9976) 75 2.21 0.016 0.84 0.008 0.71 0.005 0.39 0.001
85 3.42 0.024 1.31 0.013 1.03 0.007 0.65 0.001

10 65 0.053 0 0.017 0 0.0061 0 0.0051 0

(r°=0.9999) 75 0.146 0 0.044 0 0.0163 0 0.0137 0

85 0.336 0 0.099 0 0.0366 0 0.0312 0

of the LAM [Eq. (17¢)] is identical to the simulation-based
ideal observer analysis. We calculated B;z [Eq. (9)] by us-
ing two ideal templates that are completely matched to
the =45 deg Gabor stimuli and the exact signal and ex-
ternal noise images used in the study. Because very brief
(8.3 ms) external noise and Gabor image frames were
used, perfect summation was assumed in the calculation.
The result is B;3=8.05. The d’ values corresponding to
65%, 75%, and 85% correct performance are 0.5449,
0.9539, and 1.4657. The sampling efficiencies were calcu-
lated from the slopes of the TvC functions using Eq. (19).
For CB, sampling efficiency is 0.032, 0.051, and 0.069 at
the 65%, 75%, and 85% correct performance levels, re-
spectively. For JS, sampling efficiency is 0.022, 0.044, and
0.072 at the three performance levels. For SJ, sampling
efficiency is 0.022, 0.036, and 0.050 at the three perfor-
mance levels. These values are very similar to those ob-
tained from the simulation-based ideal observer analysis
and comparable to estimated sampling efficiencies in the
literature [51,84,85].

Like the estimated sampling efficiencies from the
simulation-based ideal observer analysis, the estimated
sampling efficiencies from the LAM-based ideal observer
analysis varied with performance level. This suggests
that both the simulation-based and the LAM-based effi-
ciency estimates are not self-coherent. According to the
LAM, the ratio between the slopes and intercepts at two
different performance levels is equal to the corresponding
d'? ratios. The d’2 ratios between 75% and 65% correct,
and between 85% and 75% correct are 3.06 and 2.36, re-
spectively. For the human observers, the relationship be-
tween the slopes and intercepts at different performance
levels are, however, inconsistent with the predictions of
the LAM (p <0.005). For our observers, the average ratio
of TvC slopes between the 75% and 65% correct and be-
tween 85% and 75% correct performance levels are 1.73
and 1.59 in the =45 deg condition. Very similar ratios are
also obtained for the intercepts. That the observed slope
and intercept ratios are much lower than the correspond-
ing d'? ratios confirms our earlier findings that the LAM

Table 4. Sampling Efficiencies of the Human Observers

Efficiency Performance + 3° * 6° + 15° + 45°
y; (CB) 65% 0.061 0.033 0.018 0.035
75% 0.076 0.044 0.030 0.050

85% 0.090 0.055 0.044 0.066

y; (JS) 65% 0.031 0.021 0.011 0.024
75% 0.033 0.034 0.019 0.042

85% 0.033 0.050 0.027 0.069

vy; (SJ) 65% 0.041 0.035 0.014 0.024
75% 0.066 0.053 0.023 0.035

85% 0.098 0.075 0.036 0.048
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is not consistent with the observed threshold ratios be-
tween different performance levels (see [6] for a review).
This is a parallel observation to what was previously
made on threshold ratios [5,6]. Increased sampling effi-
ciency with performance level is, however, consistent with
predictions of observer models that incorporate decision
uncertainty [3,56], template learning [86], or transducer
nonlinearity [5].

C. ePTM-based Efficiency Estimation

In contrast to the LAM, the ePTM provided an excellent
account of observer performance over a wide range of per-
formance levels in this study. Formulating the ePTM with
an application parallel to the LAM to understand sam-
pling efficiency within the context of other perceptual in-
efficiencies such as nonlinear transducer and multiplica-
tive noise provides a coherent framework for comparing
human performance to ideal observer performance.

It is assumed that the optimal template for each stimu-
lus is a matched filter, and that the decision rule (here,
the difference rule, which is equivalent to a max rule in
this case) is also optimal. Using the actual signal and ex-
ternal noise stimuli used in the study, we computed By
=6.10 [Eq. (9)]. From the values of Bz’s of the best-fitting
ePTM, the estimated sampling efficiency, which accounts
for performance in all three criteria, is 0.030, 0.019, and
0.031 for CB, JS, and SJ, respectively.

In the ePTM-based ideal observer analysis, we treated
sampling efficiency as a model parameter in the more
complex ePTM and estimated it in the context of the
model. This yields a single, consistent sampling efficiency
across all the performance levels and experimental condi-
tions for each observer.

6. DISCUSSION

All the existing observer models for external noise studies
have been developed in the context of target detection or
discrimination or identification of orthogonal (or nearly
orthogonal) targets. In this study, we elaborated and
tested a new form of the perceptual template model, the
“ePTM,” to consider identification or discrimination of
nonorthogonal targets required in high-precision dis-
criminations, as well as the treatment of feature differ-
ence thresholds. Using the method of constant stimuli, we
collected full contrast psychometric functions from three
observers in an orientation identification task at fovea in
four orientation difference conditions (*+3°, =6°, *=15°,
and *45° from vertical) and across a wide range of exter-
nal noise levels. We showed that the families of TvC func-
tions in the four orientation difference conditions exhib-
ited some very regular properties. The simplest
elaboration of the PTM, with the same template gain to
the better matched signal stimulus (Bg), nonlinearity (y),
internal additive noise (V,), and coefficient for multipli-
cative noise (IV,,) but varying gains of the less-well-
matched template (By) across the orientation difference
conditions, provided the best fit to all the data, accounting
for 93.3%-98.9% of the variance. Sampling efficiencies of
human observers were also estimated from the best-
fitting ePTM.
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From the gains of the perceptual templates in different
orientation difference conditions, we found that the per-
ceptual templates are broadly tuned in orientation: the
orientation bandwidth of the perceptual template is about
39.5° and there is considerable overlap between the tem-
plates in relatively high discrimination precision condi-
tions. Based on Fourier analysis, the half-height half-
width of the Gabor signal used in this study is 39.5°. The
estimated orientation bandwidth of the perceptual tem-
plate matches very well that of the Gabor stimuli. The
close match of the orientation bandwidth of the percep-
tual template with that of the Gabor stimuli suggests that
observers used near-optimal weights of the visual infor-
mation in the stimulus, supporting the notion of matched
filters in visual recognition [87,88]. However, their sam-
pling efficiencies were very low. Similar results have been
obtained by others [89].

The estimated bandwidth of the perceptual template in
the current psychophysical study reflects the orientation
bandwidth at the overall observer level. It is much
broader than that of single neurons in early visual corti-
cal areas [90,91]. For example, the average tuning width
for orientation was about 14° in a single cell study of cat
cortex [92]. Another study by Campbell and Kulikowski
[93] also found that the masking effect of one grating on
another differed in orientation by approximately 12°-15°.
On the other hand, a good deal of psychophysics research
[75,76,82,94-96] has demonstrated that the human visual
system is exquisitely sensitive to the orientation of lines
or gratings. For example, in a line orientation identifica-
tion task, Westheimer [96] found that the best thresholds
are around 0.2°-0.8° [85], 0.4°-0.8° [97], and 0.17°.

Several approaches have been proposed to resolve the
apparent discrepancy between broad orientation tuning of
cortical neurons (10°-20°) and acute human orientation
discrimination threshold (0.2°-0.8°) [18,76,85,98,99]. For
example, Geisler [76] proposed an ideal detector model
based on retinal signal and the cone sampling mosaic of
the retina for a hyperacuity task. Westheimer et al. [99]
assumed that, while detection is determined by the most
excited orientation-tuned neural element, the sharpness
of suprathreshold orientation discrimination is deter-
mined by the relative activities of two or more broadly
tuned orientation-sensitive neural elements signaling the
difference among those activities. This idea has been
framed in both the opponent-process [98] and line-
element [100,101] formulations. These two formulations
share the same idea that orientation discrimination is not
limited by the bandwidth of the broadly selective neural
elements but by a combination of their noise levels and
the shape of their sensitivity curves (specifically, by the
maximum slope difference). Regan and Beverly [98] made
a clear demonstration that a detector that is most sensi-
tive for detecting faint stimuli near its preferred orienta-
tion contributes either almost nothing or mere noise to
the discrimination of subtle orientation differences
around its preferred orientation (since the width of the
orientation tuning curve is broad). They proposed that
one possible way to discriminate these orientations is to
compare relative responses from neighboring detectors.
The idea was supported by Waugh et al. [95], who found a
bimodal curve with distinct peaks at about 10° on either



B56 J. Opt. Soc. Am. A/Vol. 26, No. 11/November 2009

side of the center line orientation in a vernier task
masked by one-dimensional visual noise. The idea has
also found support in physiological research [92,102]. For
example, Bradley et al. [92] measured the minimum dif-
ference in stimulus orientation and spatial frequency that
can produce reliable changes in the response of individual
neurons in cat visual cortex. They compared these values
with those obtained from behavioral thresholds reported
in other experiments. Although the average minimum ori-
entation difference that could be signaled reliably by most
cells from their sample was 6.4°, which was well above
the behaviorally determined thresholds, they reported
that the most selective cells signaled orientation differ-
ences as small as 1.84°, which are comparable in magni-
tude to the behaviorally observed thresholds. Most nota-
bly, the slope was reduced, and the variability was
maximal near the peak of the tuning function. Therefore,
Bradley and colleagues [92] concluded that neurons that
respond most sensitively to a particular stimulus provide
little information about orientation changes in the vicin-
ity of the stimulus. All these results implicate that the
mechanisms most sensitive to a minute offset or differ-
ence of features are processors (templates, cells, or filters)
at orientations neighboring the mechanisms that detect
the target.

The ePTM belongs to the general class of psychophysi-
cal models that use rather broadly tuned perceptual pro-
cessors to achieve high discrimination precision. In the
ePTM, visual stimuli are first processed by perceptual
templates that are tuned to the stimuli in the dimension
of variation. The overlap between the better-matched and
the less-well-matched perceptual templates determines
the discrimination precision. The ePTM extends the ear-
lier models by considering nonlinearities and internal
noise sources of the observer and is capable of modeling
full psychometric functions over a wide range of external
noise levels and orientation differences.

The ePTM also provides an alternative framework to
estimate sampling efficiencies of human observers. Tradi-
tionally, ideal observer analysis is based only on the sta-
tistical properties of the input stimulus without any con-
sideration of the perceptual process [50,84]. In this study,
conventional simulation-based ideal observer analysis re-
sulted in performance-dependent estimates of sampling
efficiencies, because the conventional ideal observer
analysis is based on linear models that cannot adequately
capture nonlinear properties of the perceptual processes.
By taking into account the internal additive noise, the
LAM-based ideal observer analysis allows us to separate
the contributions of internal additive noise from sampling
efficiency [26]. The ePTM-based ideal observer analysis
pursues this important direction. By incorporating addi-
tional observer inefficiencies other than sampling effi-
ciency, the ePTM-based ideal observer analysis provides
an excellent account of human performance as well as co-
herent estimates of sampling efficiencies.

The elaborated PTM provides an integrated framework
within which to understand the performance limitations
of the observer in the two fundamental measurement re-
gimes of contrast thresholds and feature thresholds.
Within the new elaborated observer framework, we can
characterize human performance in the “perceptual

Jeon et al.

space”—human performance as a joint function of exter-
nal noise and feature difference. This in turn will allow us
to address the question of mechanisms associated with
observer state changes (e.g., attention, perceptual learn-
ing) in a wide range of tasks involving different manipu-
lations of task difficulty (achievable accuracy), including
both the contrast threshold and feature threshold re-
gimes.
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